How do you find the intersection of a singly linked list?

Write a function to get the intersection point of two Linked Lists

There are two singly linked lists in a system. By some programming error, the end node of one of the linked list got linked to the second list, forming an inverted Y shaped list. Write a program to get the point where two linked list merge.

Above diagram shows an example with two linked list having 15 as intersection point.

Recommended: Please solve it on “PRACTICE” first, before moving on to the solution.

Method 1(Simply use two loops)
Use 2 nested for loops. The outer loop will be for each node of the 1st list and inner loop will be for 2nd list. In the inner loop, check if any of nodes of the 2nd list is same as the current node of the first linked list. The time complexity of this method will be O(M * N) where m and n are the numbers of nodes in two lists.

Method 2 (Mark Visited Nodes)
This solution requires modifications to basic linked list data structure. Have a visited flag with each node. Traverse the first linked list and keep marking visited nodes. Now traverse the second linked list, If you see a visited node again then there is an intersection point, return the intersecting node. This solution works in O(m+n) but requires additional information with each node. A variation of this solution that doesn’t require modification to the basic data structure can be implemented using a hash. Traverse the first linked list and store the addresses of visited nodes in a hash. Now traverse the second linked list and if you see an address that already exists in the hash then return the intersecting node.



Method 3(Using difference of node counts)

  • Get count of the nodes in the first list, let count be c1.
  • Get count of the nodes in the second list, let count be c2.
  • Get the difference of counts d = abs(c1 – c2)
  • Now traverse the bigger list from the first node till d nodes so that from here onwards both the lists have equal no of nodes
  • Then we can traverse both the lists in parallel till we come across a common node. (Note that getting a common node is done by comparing the address of the nodes)

Below image is a dry run of the above approach:

How do you find the intersection of a singly linked list?

Below is the implementation of the above approach :




// C++ program to get intersection point of two linked list

#include

using namespace std;

/* Link list node */

class Node {

public:

int data;

Node* next;

};

/* Function to get the counts of node in a linked list */

int getCount(Node* head);

/* function to get the intersection point of two linked

lists head1 and head2 where head1 has d more nodes than

head2 */

int _getIntesectionNode(int d, Node* head1, Node* head2);

/* function to get the intersection point of two linked

lists head1 and head2 */

int getIntesectionNode(Node* head1, Node* head2)

{

// Count the number of nodes in

// both the linked list

int c1 = getCount(head1);

int c2 = getCount(head2);

int d;

// If first is greater

if (c1 > c2) {

d = c1 - c2;

return _getIntesectionNode(d, head1, head2);

}

else {

d = c2 - c1;

return _getIntesectionNode(d, head2, head1);

}

}

/* function to get the intersection point of two linked

lists head1 and head2 where head1 has d more nodes than

head2 */

int _getIntesectionNode(int d, Node* head1, Node* head2)

{

// Stand at the starting of the bigger list

Node* current1 = head1;

Node* current2 = head2;

// Move the pointer forward

for (int i = 0; i < d; i++) {

if (current1 == NULL) {

return -1;

}

current1 = current1->next;

}

// Move both pointers of both list till they

// intersect with each other

while (current1 != NULL && current2 != NULL) {

if (current1 == current2)

return current1->data;

// Move both the pointers forward

current1 = current1->next;

current2 = current2->next;

}

return -1;

}

/* Takes head pointer of the linked list and

returns the count of nodes in the list */

int getCount(Node* head)

{

Node* current = head;

// Counter to store count of nodes

int count = 0;

// Iterate till NULL

while (current != NULL) {

// Increase the counter

count++;

// Move the Node ahead

current = current->next;

}

return count;

}

// Driver Code

int main()

{

/*

Create two linked lists

1st 3->6->9->15->30

2nd 10->15->30

15 is the intersection point

*/

Node* newNode;

// Addition of new nodes

Node* head1 = new Node();

head1->data = 10;

Node* head2 = new Node();

head2->data = 3;

newNode = new Node();

newNode->data = 6;

head2->next = newNode;

newNode = new Node();

newNode->data = 9;

head2->next->next = newNode;

newNode = new Node();

newNode->data = 15;

head1->next = newNode;

head2->next->next->next = newNode;

newNode = new Node();

newNode->data = 30;

head1->next->next = newNode;

head1->next->next->next = NULL;

cout << "The node of intersection is " << getIntesectionNode(head1, head2);

}

// This code is contributed by rathbhupendra




// C program to get intersection point of two linked list

#include

#include

/* Link list node */

struct Node {

int data;

struct Node* next;

};

/* Function to get the counts of node in a linked list */

int getCount(struct Node* head);

/* function to get the intersection point of two linked

lists head1 and head2 where head1 has d more nodes than

head2 */

int _getIntesectionNode(int d, struct Node* head1, struct Node* head2);

/* function to get the intersection point of two linked

lists head1 and head2 */

int getIntesectionNode(struct Node* head1, struct Node* head2)

{

int c1 = getCount(head1);

int c2 = getCount(head2);

int d;

if (c1 > c2) {

d = c1 - c2;

return _getIntesectionNode(d, head1, head2);

}

else {

d = c2 - c1;

return _getIntesectionNode(d, head2, head1);

}

}

/* function to get the intersection point of two linked

lists head1 and head2 where head1 has d more nodes than

head2 */

int _getIntesectionNode(int d, struct Node* head1, struct Node* head2)

{

int i;

struct Node* current1 = head1;

struct Node* current2 = head2;

for (i = 0; i < d; i++) {

if (current1 == NULL) {

return -1;

}

current1 = current1->next;

}

while (current1 != NULL && current2 != NULL) {

if (current1 == current2)

return current1->data;

current1 = current1->next;

current2 = current2->next;

}

return -1;

}

/* Takes head pointer of the linked list and

returns the count of nodes in the list */

int getCount(struct Node* head)

{

struct Node* current = head;

int count = 0;

while (current != NULL) {

count++;

current = current->next;

}

return count;

}

/* IGNORE THE BELOW LINES OF CODE. THESE LINES

ARE JUST TO QUICKLY TEST THE ABOVE FUNCTION */

int main()

{

/*

Create two linked lists

1st 3->6->9->15->30

2nd 10->15->30

15 is the intersection point

*/

struct Node* newNode;

struct Node* head1 = (struct Node*)malloc(sizeof(struct Node));

head1->data = 10;

struct Node* head2 = (struct Node*)malloc(sizeof(struct Node));

head2->data = 3;

newNode = (struct Node*)malloc(sizeof(struct Node));

newNode->data = 6;

head2->next = newNode;

newNode = (struct Node*)malloc(sizeof(struct Node));

newNode->data = 9;

head2->next->next = newNode;

newNode = (struct Node*)malloc(sizeof(struct Node));

newNode->data = 15;

head1->next = newNode;

head2->next->next->next = newNode;

newNode = (struct Node*)malloc(sizeof(struct Node));

newNode->data = 30;

head1->next->next = newNode;

head1->next->next->next = NULL;

printf("\n The node of intersection is %d \n",

getIntesectionNode(head1, head2));

getchar();

}




// Java program to get intersection point of two linked list

class LinkedList {

static Node head1, head2;

static class Node {

int data;

Node next;

Node(int d)

{

data = d;

next = null;

}

}

/*function to get the intersection point of two linked

lists head1 and head2 */

int getNode()

{

int c1 = getCount(head1);

int c2 = getCount(head2);

int d;

if (c1 > c2) {

d = c1 - c2;

return _getIntesectionNode(d, head1, head2);

}

else {

d = c2 - c1;

return _getIntesectionNode(d, head2, head1);

}

}

/* function to get the intersection point of two linked

lists head1 and head2 where head1 has d more nodes than

head2 */

int _getIntesectionNode(int d, Node node1, Node node2)

{

int i;

Node current1 = node1;

Node current2 = node2;

for (i = 0; i < d; i++) {

if (current1 == null) {

return -1;

}

current1 = current1.next;

}

while (current1 != null && current2 != null) {

if (current1.data == current2.data) {

return current1.data;

}

current1 = current1.next;

current2 = current2.next;

}

return -1;

}

/*Takes head pointer of the linked list and

returns the count of nodes in the list */

int getCount(Node node)

{

Node current = node;

int count = 0;

while (current != null) {

count++;

current = current.next;

}

return count;

}

public static void main(String[] args)

{

LinkedList list = new LinkedList();

// creating first linked list

list.head1 = new Node(3);

list.head1.next = new Node(6);

list.head1.next.next = new Node(9);

list.head1.next.next.next = new Node(15);

list.head1.next.next.next.next = new Node(30);

// creating second linked list

list.head2 = new Node(10);

list.head2.next = new Node(15);

list.head2.next.next = new Node(30);

System.out.println("The node of intersection is " + list.getNode());

}

}

// This code has been contributed by Mayank Jaiswal




# defining a node for LinkedList

class Node:

def __init__(self,data):

self.data=data

self.next=None

def getIntersectionNode(head1,head2):

#finding the total number of elements in head1 LinkedList

c1=getCount(head1)

#finding the total number of elements in head2 LinkedList

c2=getCount(head2)

#Traverse the bigger node by 'd' so that from that node onwards, both LinkedList

#would be having same number of nodes and we can traverse them together.

if c1 > c2:

d=c1-c2

return _getIntersectionNode(d,head1,head2)

else:

d=c2-c1

return _getIntersectionNode(d,head2,head1)

def _getIntersectionNode(d,head1,head2):

current1=head1

current2=head2

for i in range(d):

if current1 is None:

return -1

current1=current1.next

while current1 is not None and current2 is not None:

# Instead of values, we need to check if there addresses are same

# because there can be a case where value is same but that value is

#not an intersecting point.

if current1 is current2:

return current1.data # or current2.data ( the value would be same)

current1=current1.next

current2=current2.next

# Incase, we are not able to find our intersecting point.

return -1

#Function to get the count of a LinkedList

def getCount(node):

cur=node

count=0

while cur is not None:

count+=1

cur=cur.next

return count

if __name__ == '__main__':

# Creating two LinkedList

# 1st one: 3->6->9->15->30

# 2nd one: 10->15->30

# We can see that 15 would be our intersection point

# Defining the common node

common=Node(15)

#Defining first LinkedList

head1=Node(3)

head1.next=Node(6)

head1.next.next=Node(9)

head1.next.next.next=common

head1.next.next.next.next=Node(30)

# Defining second LinkedList

head2=Node(10)

head2.next=common

head2.next.next=Node(30)

print("The node of intersection is ",getIntersectionNode(head1,head2))

# The code is contributed by Ansh Gupta.




// C# program to get intersection point of two linked list

using System;

class LinkedList {

Node head1, head2;

public class Node {

public int data;

public Node next;

public Node(int d)

{

data = d;

next = null;

}

}

/*function to get the intersection point of two linked

lists head1 and head2 */

int getNode()

{

int c1 = getCount(head1);

int c2 = getCount(head2);

int d;

if (c1 > c2) {

d = c1 - c2;

return _getIntesectionNode(d, head1, head2);

}

else {

d = c2 - c1;

return _getIntesectionNode(d, head2, head1);

}

}

/* function to get the intersection point of two linked

lists head1 and head2 where head1 has d more nodes than

head2 */

int _getIntesectionNode(int d, Node node1, Node node2)

{

int i;

Node current1 = node1;

Node current2 = node2;

for (i = 0; i < d; i++) {

if (current1 == null) {

return -1;

}

current1 = current1.next;

}

while (current1 != null && current2 != null) {

if (current1.data == current2.data) {

return current1.data;

}

current1 = current1.next;

current2 = current2.next;

}

return -1;

}

/*Takes head pointer of the linked list and

returns the count of nodes in the list */

int getCount(Node node)

{

Node current = node;

int count = 0;

while (current != null) {

count++;

current = current.next;

}

return count;

}

public static void Main(String[] args)

{

LinkedList list = new LinkedList();

// creating first linked list

list.head1 = new Node(3);

list.head1.next = new Node(6);

list.head1.next.next = new Node(9);

list.head1.next.next.next = new Node(15);

list.head1.next.next.next.next = new Node(30);

// creating second linked list

list.head2 = new Node(10);

list.head2.next = new Node(15);

list.head2.next.next = new Node(30);

Console.WriteLine("The node of intersection is " + list.getNode());

}

}

// This code is contributed by Arnab Kundu




Output The node of intersection is 15

Time Complexity: O(m+n)
Auxiliary Space: O(1)

Method 4(Make circle in first list)
Thanks to Saravanan Man for providing below solution.
1. Traverse the first linked list(count the elements) and make a circular linked list. (Remember the last node so that we can break the circle later on).
2. Now view the problem as finding the loop in the second linked list. So the problem is solved.
3. Since we already know the length of the loop(size of the first linked list) we can traverse those many numbers of nodes in the second list, and then start another pointer from the beginning of the second list. we have to traverse until they are equal, and that is the required intersection point.
4. remove the circle from the linked list.

Time Complexity: O(m+n)
Auxiliary Space: O(1)

Method 5 (Reverse the first list and make equations)
Thanks to Saravanan Mani for providing this method.

1) Let X be the length of the first linked list until intersection point. Let Y be the length of the second linked list until the intersection point. Let Z be the length of the linked list from the intersection point to End of the linked list including the intersection node. We Have X + Z = C1; Y + Z = C2; 2) Reverse first linked list. 3) Traverse Second linked list. Let C3 be the length of second list - 1. Now we have X + Y = C3 We have 3 linear equations. By solving them, we get X = (C1 + C3 – C2)/2; Y = (C2 + C3 – C1)/2; Z = (C1 + C2 – C3)/2; WE GOT THE INTERSECTION POINT. 4) Reverse first linked list.

Advantage: No Comparison of pointers.
Disadvantage: Modifying linked list(Reversing list).
Time complexity: O(m+n)
Auxiliary Space: O(1)

Method 6 (Traverse both lists and compare addresses of last nodes) This method is only to detect if there is an intersection point or not. (Thanks to NeoTheSaviour for suggesting this)

1) Traverse the list 1, store the last node address 2) Traverse the list 2, store the last node address. 3) If nodes stored in 1 and 2 are same then they are intersecting.

The time complexity of this method is O(m+n) and used Auxiliary space is O(1)

Method 7 (Use Hashing)
Basically, we need to find a common node of two linked lists. So we hash all nodes of the first list and then check the second list.
1) Create an empty hash set.
2) Traverse the first linked list and insert all nodes’ addresses in the hash set.
3) Traverse the second list. For every node check if it is present in the hash set. If we find a node in the hash set, return the node.




// Java program to get intersection point of two linked list

import java.util.*;

class Node {

int data;

Node next;

Node(int d)

{

data = d;

next = null;

}

}

class LinkedListIntersect {

public static void main(String[] args)

{

// list 1

Node n1 = new Node(1);

n1.next = new Node(2);

n1.next.next = new Node(3);

n1.next.next.next = new Node(4);

n1.next.next.next.next = new Node(5);

n1.next.next.next.next.next = new Node(6);

n1.next.next.next.next.next.next = new Node(7);

// list 2

Node n2 = new Node(10);

n2.next = new Node(9);

n2.next.next = new Node(8);

n2.next.next.next = n1.next.next.next;

Print(n1);

Print(n2);

System.out.println(MegeNode(n1, n2).data);

}

// function to print the list

public static void Print(Node n)

{

Node cur = n;

while (cur != null) {

System.out.print(cur.data + " ");

cur = cur.next;

}

System.out.println();

}

// function to find the intersection of two node

public static Node MegeNode(Node n1, Node n2)

{

// define hashset

HashSet hs = new HashSet();

while (n1 != null) {

hs.add(n1);

n1 = n1.next;

}

while (n2 != null) {

if (hs.contains(n2)) {

return n2;

}

n2 = n2.next;

}

return null;

}

}




# Python program to get intersection

# point of two linked list

class Node :

def __init__(self, d):

self.data = d;

self.next = None;

# Function to print the list

def Print(n):

cur = n;

while (cur != None) :

print(cur.data, end=" ");

cur = cur.next;

print("");

# Function to find the intersection of two node

def MegeNode(n1, n2):

# Define hashset

hs = set();

while (n1 != None):

hs.add(n1);

n1 = n1.next;

while (n2 != None):

if (n2 in hs):

return n2;

n2 = n2.next;

return None;

# Driver code

# list 1

n1 = Node(1);

n1.next = Node(2);

n1.next.next = Node(3);

n1.next.next.next = Node(4);

n1.next.next.next.next = Node(5);

n1.next.next.next.next.next = Node(6);

n1.next.next.next.next.next.next = Node(7);

# list 2

n2 = Node(10);

n2.next = Node(9);

n2.next.next = Node(8);

n2.next.next.next = n1.next.next.next;

Print(n1);

Print(n2);

print(MegeNode(n1, n2).data);

# This code is contributed by _saurabh_jaiswal




// C# program to get intersection point of two linked list

using System;

using System.Collections.Generic;

public class Node

{

public int data;

public Node next;

public Node(int d)

{

data = d;

next = null;

}

}

public class LinkedListIntersect

{

public static void Main(String[] args)

{

// list 1

Node n1 = new Node(1);

n1.next = new Node(2);

n1.next.next = new Node(3);

n1.next.next.next = new Node(4);

n1.next.next.next.next = new Node(5);

n1.next.next.next.next.next = new Node(6);

n1.next.next.next.next.next.next = new Node(7);

// list 2

Node n2 = new Node(10);

n2.next = new Node(9);

n2.next.next = new Node(8);

n2.next.next.next = n1.next.next.next;

Print(n1);

Print(n2);

Console.WriteLine(MegeNode(n1, n2).data);

}

// function to print the list

public static void Print(Node n)

{

Node cur = n;

while (cur != null)

{

Console.Write(cur.data + " ");

cur = cur.next;

}

Console.WriteLine();

}

// function to find the intersection of two node

public static Node MegeNode(Node n1, Node n2)

{

// define hashset

HashSet hs = new HashSet();

while (n1 != null)

{

hs.Add(n1);

n1 = n1.next;

}

while (n2 != null)

{

if (hs.Contains(n2))

{

return n2;

}

n2 = n2.next;

}

return null;

}

}

// This code is contributed by 29AjayKumar




Output 1 2 3 4 5 6 7 10 9 8 4 5 6 7 4

This method required O(n) additional space and not very efficient if one list is large.

Method 8( 2-pointer technique ):

Using Two pointers :

  • Initialize two pointers ptr1 and ptr2 at the head1 and head2.
  • Traverse through the lists,one node at a time.
  • When ptr1 reaches the end of a list, then redirect it to the head2.
  • similarly when ptr2 reaches the end of a list, redirect it the head1.
  • Once both of them go through reassigning, they will be equidistant from
    the collision point
  • If at any node ptr1 meets ptr2, then it is the intersection node.
  • After second iteration if there is no intersection node it returns NULL.




// CPP program to print intersection of lists

#include

using namespace std;

/* Link list node */

class Node {

public:

int data;

Node* next;

};

// A utility function to return intersection node

Node* intersectPoint(Node* head1, Node* head2)

{

// Maintaining two pointers ptr1 and ptr2

// at the head of A and B,

Node* ptr1 = head1;

Node* ptr2 = head2;

// If any one of head is NULL i.e

// no Intersection Point

if (ptr1 == NULL || ptr2 == NULL) {

return NULL;

}

// Traverse through the lists until they

// reach Intersection node

while (ptr1 != ptr2) {

ptr1 = ptr1->next;

ptr2 = ptr2->next;

// If at any node ptr1 meets ptr2, then it is

// intersection node.Return intersection node.

if (ptr1 == ptr2) {

return ptr1;

}

/* Once both of them go through reassigning,

they will be equidistant from the collision point.*/

// When ptr1 reaches the end of a list, then

// reassign it to the head2.

if (ptr1 == NULL) {

ptr1 = head2;

}

// When ptr2 reaches the end of a list, then

// redirect it to the head1.

if (ptr2 == NULL) {

ptr2 = head1;

}

}

return ptr1;

}

// Function to print intersection nodes

// in a given linked list

void print(Node* node)

{

if (node == NULL)

cout << "NULL";

while (node->next != NULL) {

cout << node->data << "->";

node = node->next;

}

cout << node->data;

}

// Driver code

int main()

{

/*

Create two linked lists

1st Linked list is 3->6->9->15->30

2nd Linked list is 10->15->30

15 30 are elements in the intersection list

*/

Node* newNode;

Node* head1 = new Node();

head1->data = 10;

Node* head2 = new Node();

head2->data = 3;

newNode = new Node();

newNode->data = 6;

head2->next = newNode;

newNode = new Node();

newNode->data = 9;

head2->next->next = newNode;

newNode = new Node();

newNode->data = 15;

head1->next = newNode;

head2->next->next->next = newNode;

newNode = new Node();

newNode->data = 30;

head1->next->next = newNode;

head1->next->next->next = NULL;

Node* intersect_node = NULL;

// Find the intersection node of two linked lists

intersect_node = intersectPoint(head1, head2);

cout << "INTERSEPOINT LIST :";

print(intersect_node);

return 0;

// This code is contributed by bolliranadheer

}




// JAVA program to print intersection of lists

import java.util.*;

class GFG{

/* Link list node */

static class Node {

int data;

Node next;

};

// A utility function to return intersection node

static Node intersectPoint(Node head1, Node head2)

{

// Maintaining two pointers ptr1 and ptr2

// at the head of A and B,

Node ptr1 = head1;

Node ptr2 = head2;

// If any one of head is null i.e

// no Intersection Point

if (ptr1 == null || ptr2 == null) {

return null;

}

// Traverse through the lists until they

// reach Intersection node

while (ptr1 != ptr2) {

ptr1 = ptr1.next;

ptr2 = ptr2.next;

// If at any node ptr1 meets ptr2, then it is

// intersection node.Return intersection node.

if (ptr1 == ptr2) {

return ptr1;

}

/* Once both of them go through reassigning,

they will be equidistant from the collision point.*/

// When ptr1 reaches the end of a list, then

// reassign it to the head2.

if (ptr1 == null) {

ptr1 = head2;

}

// When ptr2 reaches the end of a list, then

// redirect it to the head1.

if (ptr2 == null) {

ptr2 = head1;

}

}

return ptr1;

}

// Function to print intersection nodes

// in a given linked list

static void print(Node node)

{

if (node == null)

System.out.print("null");

while (node.next != null) {

System.out.print(node.data+ ".");

node = node.next;

}

System.out.print(node.data);

}

// Driver code

public static void main(String[] args)

{

/*

Create two linked lists

1st Linked list is 3.6.9.15.30

2nd Linked list is 10.15.30

15 30 are elements in the intersection list

*/

Node newNode;

Node head1 = new Node();

head1.data = 10;

Node head2 = new Node();

head2.data = 3;

newNode = new Node();

newNode.data = 6;

head2.next = newNode;

newNode = new Node();

newNode.data = 9;

head2.next.next = newNode;

newNode = new Node();

newNode.data = 15;

head1.next = newNode;

head2.next.next.next = newNode;

newNode = new Node();

newNode.data = 30;

head1.next.next = newNode;

head1.next.next.next = null;

Node intersect_node = null;

// Find the intersection node of two linked lists

intersect_node = intersectPoint(head1, head2);

System.out.print("INTERSEPOINT LIST :");

print(intersect_node);

}

}

// This code is contributed by umadevi9616.




// C# program to print intersection of lists

using System;

public class GFG {

/* Link list node */

public

class Node {

public

int data;

public

Node next;

};

// A utility function to return intersection node

static Node intersectPoint(Node head1, Node head2) {

// Maintaining two pointers ptr1 and ptr2

// at the head of A and B,

Node ptr1 = head1;

Node ptr2 = head2;

// If any one of head is null i.e

// no Intersection Point

if (ptr1 == null || ptr2 == null) {

return null;

}

// Traverse through the lists until they

// reach Intersection node

while (ptr1 != ptr2) {

ptr1 = ptr1.next;

ptr2 = ptr2.next;

// If at any node ptr1 meets ptr2, then it is

// intersection node.Return intersection node.

if (ptr1 == ptr2) {

return ptr1;

}

/*

* Once both of them go through reassigning, they will be equidistant from the

* collision point.

*/

// When ptr1 reaches the end of a list, then

// reassign it to the head2.

if (ptr1 == null) {

ptr1 = head2;

}

// When ptr2 reaches the end of a list, then

// redirect it to the head1.

if (ptr2 == null) {

ptr2 = head1;

}

}

return ptr1;

}

// Function to print intersection nodes

// in a given linked list

static void print(Node node) {

if (node == null)

Console.Write("null");

while (node.next != null) {

Console.Write(node.data + "->");

node = node.next;

}

Console.Write(node.data);

}

// Driver code

public static void Main(String[] args)

{

/*

* Create two linked lists

*

* 1st Linked list is 3.6.9.15.30 2nd Linked list is 10.15.30

*

* 15 30 are elements in the intersection list

*/

Node newNode;

Node head1 = new Node();

head1.data = 10;

Node head2 = new Node();

head2.data = 3;

newNode = new Node();

newNode.data = 6;

head2.next = newNode;

newNode = new Node();

newNode.data = 9;

head2.next.next = newNode;

newNode = new Node();

newNode.data = 15;

head1.next = newNode;

head2.next.next.next = newNode;

newNode = new Node();

newNode.data = 30;

head1.next.next = newNode;

head1.next.next.next = null;

Node intersect_node = null;

// Find the intersection node of two linked lists

intersect_node = intersectPoint(head1, head2);

Console.Write("INTERSEPOINT LIST :");

print(intersect_node);

}

}

// This code is contributed by gauravrajput1

Output INTERSEPOINT LIST :15->30

Time complexity : O( m + n )
Auxiliary Space: O(1)

Please write comments if you find any bug in the above algorithm or a better way to solve the same problem.

How do you find the intersection of a singly linked list?




Article Tags :

Linked List

Accolite

Amazon

D-E-Shaw

FactSet

Goldman Sachs

MakeMyTrip

MAQ Software

Microsoft

Qualcomm

Snapdeal

Visa

Zopper

Practice Tags :

Accolite

Amazon

Microsoft

Snapdeal

D-E-Shaw

FactSet

MakeMyTrip

Visa

Goldman Sachs

MAQ Software

Qualcomm

Zopper

Linked List

Union and Intersection of two Linked Lists

Given two Linked Lists, create union and intersection lists that contain union and intersection of the elements present in the given lists. The order of elements in output lists doesn’t matter.
Example:

Input: List1: 10->15->4->20 List2: 8->4->2->10 Output: Intersection List: 4->10 Union List: 2->8->20->4->15->10

1. Using Hashing

The idea is to traverse the first list and store each node’s address in a hash table. Then traverse the second list and get the address of the first node present in the hash table. This node would be the intersection point. Following is the C++, Java, and Python implementation based on the idea:

C++


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

#include

#include

using namespace std;

// A Linked List Node

struct Node

{

int data;

Node* next;

};

// Utility function to create a new node with the given data and

// pushes it onto the list's front

void push(Node*& headRef, int data)

{

// create a new linked list node from the heap

Node* newNode = new Node;

newNode->data = data;

newNode->next = headRef;

headRef = newNode;

}

// Function to find the intersection point of two linked lists using hashing

Node* findIntersection(Node* first, Node* second)

{

// maintain a set to store list nodes

unordered_set<Node*> nodes;

// traverse the first list and insert the address of each node into the set

while (first)

{

nodes.insert(first);

first = first->next;

}

// now traverse the second list and find the first node that is

// already present in the set

while (second)

{

// return the current node if it is found in the set

if (nodes.find(second) != nodes.end()) {

return second;

}

second = second->next;

}

// we reach here if lists do not intersect

return nullptr;

}

int main()

{

// construct the first linked list (1 —> 2 —> 3 —> 4 —> 5 —> null)

Node* first = nullptr;

for (int i = 5; i > 0; i--) {

push(first, i);

}

// construct the second linked list (1 —> 2 —> 3 —> null)

Node* second = nullptr;

for (int i = 3; i > 0; i--) {

push(second, i);

}

// link tail of the second list to the fourth node of the first list

second->next->next->next = first->next->next->next;

Node* addr = findIntersection(first, second);

if (addr) {

cout << "The intersection point is " << addr->data << endl;

}

else {

cout << "The lists do not intersect." << endl;

}

return 0;

}

DownloadRun Code

Output:

The intersection point is 4