Implementation of singly linked list in data structure program

Linked List | Set 1 [Introduction]

Like arrays, Linked List is a linear data structure. Unlike arrays, linked list elements are not stored at a contiguous location; the elements are linked using pointers.

Why Linked List?
Arrays can be used to store linear data of similar types, but arrays have the following limitations.
1] The size of the arrays is fixed: So we must know the upper limit on the number of elements in advance. Also, generally, the allocated memory is equal to the upper limit irrespective of the usage.
2] Inserting a new element in an array of elements is expensive because the room has to be created for the new elements and to create room existing elements have to be shifted but in Linked list if we have the head node then we can traverse to any node through it and insert new node at the required position.
For example, in a system, if we maintain a sorted list of IDs in an array id[].
id[] = [1000, 1010, 1050, 2000, 2040].
And if we want to insert a new ID 1005, then to maintain the sorted order, we have to move all the elements after 1000 [excluding 1000].
Deletion is also expensive with arrays until unless some special techniques are used. For example, to delete 1010 in id[], everything after 1010 has to be moved due to this so much work is being done which affects the efficiency of the code.
Advantages over arrays
1] Dynamic size
2] Ease of insertion/deletion
Drawbacks:
1] Random access is not allowed. We have to access elements sequentially starting from the first node[head node]. So we cannot do binary search with linked lists efficiently with its default implementation. Read about it here.
2] Extra memory space for a pointer is required with each element of the list.
3] Not cache friendly. Since array elements are contiguous locations, there is locality of reference which is not there in case of linked lists.
Representation:
A linked list is represented by a pointer to the first node of the linked list. The first node is called the head. If the linked list is empty, then the value of the head points to NULL.
Each node in a list consists of at least two parts:
1] data[we can store integer, strings or any type of data].
2] Pointer [Or Reference] to the next node[connects one node to another]
In C, we can represent a node using structures. Below is an example of a linked list node with integer data.
In Java or C#, LinkedList can be represented as a class and a Node as a separate class. The LinkedList class contains a reference of Node class type.

C




// A linked list node
struct Node {
int data;
struct Node* next;
};
C++




class Node {
public:
int data;
Node* next;
};
Java




class LinkedList {
Node head; // head of the list
/* Linked list Node*/
class Node {
int data;
Node next;
// Constructor to create a new node
// Next is by default initialized
// as null
Node[int d] { data = d; }
}
}
Python




# Node class
class Node:
# Function to initialize the node object
def __init__[self, data]:
self.data = data # Assign data
self.next = None # Initialize
# next as null
# Linked List class
class LinkedList:
# Function to initialize the Linked
# List object
def __init__[self]:
self.head = None
C#




class LinkedList {
// The first node[head] of the linked list
// Will be an object of type Node [null by default]
Node head;
class Node {
int data;
Node next;
// Constructor to create a new node
Node[int d] { data = d; }
}
}
Javascript




var head; // head of the list
/* Linked list Node*/
class Node
{
// Constructor to create a new node
// Next is by default initialized
// as null
constructor[val] {
this.data = val;
this.next = null;
}
}
// This code is contributed by gauravrajput1

First Simple Linked List in C Let us create a simple linked list with 3 nodes.



C++




// A simple CPP program to introduce
// a linked list
#include
using namespace std;
class Node {
public:
int data;
Node* next;
};
// Program to create a simple linked
// list with 3 nodes
int main[]
{
Node* head = NULL;
Node* second = NULL;
Node* third = NULL;
// allocate 3 nodes in the heap
head = new Node[];
second = new Node[];
third = new Node[];
/* Three blocks have been allocated dynamically.
We have pointers to these three blocks as head,
second and third
head second third
| | |
| | |
+---+-----+ +----+----+ +----+----+
| # | # | | # | # | | # | # |
+---+-----+ +----+----+ +----+----+
# represents any random value.
Data is random because we haven’t assigned
anything yet */
head->data = 1; // assign data in first node
head->next = second; // Link first node with
// the second node
/* data has been assigned to the data part of first
block [block pointed by the head]. And next
pointer of the first block points to second.
So they both are linked.
head second third
| | |
| | |
+---+---+ +----+----+ +-----+----+
| 1 | o----->| # | # | | # | # |
+---+---+ +----+----+ +-----+----+
*/
// assign data to second node
second->data = 2;
// Link second node with the third node
second->next = third;
/* data has been assigned to the data part of the second
block [block pointed by second]. And next
pointer of the second block points to the third
block. So all three blocks are linked.
head second third
| | |
| | |
+---+---+ +---+---+ +----+----+
| 1 | o----->| 2 | o-----> | # | # |
+---+---+ +---+---+ +----+----+ */
third->data = 3; // assign data to third node
third->next = NULL;
/* data has been assigned to the data part of the third
block [block pointed by third]. And next pointer
of the third block is made NULL to indicate
that the linked list is terminated here.
We have the linked list ready.
head
|
|
+---+---+ +---+---+ +----+------+
| 1 | o----->| 2 | o-----> | 3 | NULL |
+---+---+ +---+---+ +----+------+
Note that only the head is sufficient to represent
the whole list. We can traverse the complete
list by following the next pointers. */
return 0;
}
// This code is contributed by rathbhupendra
C




// A simple C program to introduce
// a linked list
#include
#include
struct Node {
int data;
struct Node* next;
};
// Program to create a simple linked
// list with 3 nodes
int main[]
{
struct Node* head = NULL;
struct Node* second = NULL;
struct Node* third = NULL;
// allocate 3 nodes in the heap
head = [struct Node*]malloc[sizeof[struct Node]];
second = [struct Node*]malloc[sizeof[struct Node]];
third = [struct Node*]malloc[sizeof[struct Node]];
/* Three blocks have been allocated dynamically.
We have pointers to these three blocks as head,
second and third
head second third
| | |
| | |
+---+-----+ +----+----+ +----+----+
| # | # | | # | # | | # | # |
+---+-----+ +----+----+ +----+----+
# represents any random value.
Data is random because we haven’t assigned
anything yet */
head->data = 1; // assign data in first node
head->next = second; // Link first node with
// the second node
/* data has been assigned to the data part of the first
block [block pointed by the head]. And next
pointer of first block points to second.
So they both are linked.
head second third
| | |
| | |
+---+---+ +----+----+ +-----+----+
| 1 | o----->| # | # | | # | # |
+---+---+ +----+----+ +-----+----+
*/
// assign data to second node
second->data = 2;
// Link second node with the third node
second->next = third;
/* data has been assigned to the data part of the second
block [block pointed by second]. And next
pointer of the second block points to the third
block. So all three blocks are linked.
head second third
| | |
| | |
+---+---+ +---+---+ +----+----+
| 1 | o----->| 2 | o-----> | # | # |
+---+---+ +---+---+ +----+----+ */
third->data = 3; // assign data to third node
third->next = NULL;
/* data has been assigned to data part of third
block [block pointed by third]. And next pointer
of the third block is made NULL to indicate
that the linked list is terminated here.
We have the linked list ready.
head
|
|
+---+---+ +---+---+ +----+------+
| 1 | o----->| 2 | o-----> | 3 | NULL |
+---+---+ +---+---+ +----+------+
Note that only head is sufficient to represent
the whole list. We can traverse the complete
list by following next pointers. */
return 0;
}
Java




// A simple Java program to introduce a linked list
class LinkedList {
Node head; // head of list
/* Linked list Node. This inner class is made static so that
main[] can access it */
static class Node {
int data;
Node next;
Node[int d]
{
data = d;
next = null;
} // Constructor
}
/* method to create a simple linked list with 3 nodes*/
public static void main[String[] args]
{
/* Start with the empty list. */
LinkedList llist = new LinkedList[];
llist.head = new Node[1];
Node second = new Node[2];
Node third = new Node[3];
/* Three nodes have been allocated dynamically.
We have references to these three blocks as head,
second and third
llist.head second third
| | |
| | |
+----+------+ +----+------+ +----+------+
| 1 | null | | 2 | null | | 3 | null |
+----+------+ +----+------+ +----+------+ */
llist.head.next = second; // Link first node with the second node
/* Now next of the first Node refers to the second. So they
both are linked.
llist.head second third
| | |
| | |
+----+------+ +----+------+ +----+------+
| 1 | o-------->| 2 | null | | 3 | null |
+----+------+ +----+------+ +----+------+ */
second.next = third; // Link second node with the third node
/* Now next of the second Node refers to third. So all three
nodes are linked.
llist.head second third
| | |
| | |
+----+------+ +----+------+ +----+------+
| 1 | o-------->| 2 | o-------->| 3 | null |
+----+------+ +----+------+ +----+------+ */
}
}
Python




# A simple Python program to introduce a linked list
# Node class
class Node:
# Function to initialise the node object
def __init__[self, data]:
self.data = data # Assign data
self.next = None # Initialize next as null
# Linked List class contains a Node object
class LinkedList:
# Function to initialize head
def __init__[self]:
self.head = None
# Code execution starts here
if __name__=='__main__':
# Start with the empty list
llist = LinkedList[]
llist.head = Node[1]
second = Node[2]
third = Node[3]
'''
Three nodes have been created.
We have references to these three blocks as head,
second and third
llist.head second third
| | |
| | |
+----+------+ +----+------+ +----+------+
| 1 | None | | 2 | None | | 3 | None |
+----+------+ +----+------+ +----+------+
'''
llist.head.next = second; # Link first node with second
'''
Now next of first Node refers to second. So they
both are linked.
llist.head second third
| | |
| | |
+----+------+ +----+------+ +----+------+
| 1 | o-------->| 2 | null | | 3 | null |
+----+------+ +----+------+ +----+------+
'''
second.next = third; # Link second node with the third node
'''
Now next of second Node refers to third. So all three
nodes are linked.
llist.head second third
| | |
| | |
+----+------+ +----+------+ +----+------+
| 1 | o-------->| 2 | o-------->| 3 | null |
+----+------+ +----+------+ +----+------+
'''
C#




// A simple C# program to introduce a linked list
using System;
public class LinkedList {
Node head; // head of list
/* Linked list Node. This inner class is made static so that
main[] can access it */
public class Node {
public int data;
public Node next;
public Node[int d]
{
data = d;
next = null;
} // Constructor
}
/* method to create a simple linked list with 3 nodes*/
public static void Main[String[] args]
{
/* Start with the empty list. */
LinkedList llist = new LinkedList[];
llist.head = new Node[1];
Node second = new Node[2];
Node third = new Node[3];
/* Three nodes have been allocated dynamically.
We have references to these three blocks as head,
second and third
llist.head second third
| | |
| | |
+----+------+ +----+------+ +----+------+
| 1 | null | | 2 | null | | 3 | null |
+----+------+ +----+------+ +----+------+ */
llist.head.next = second; // Link first node with the second node
/* Now next of first Node refers to second. So they
both are linked.
llist.head second third
| | |
| | |
+----+------+ +----+------+ +----+------+
| 1 | o-------->| 2 | null | | 3 | null |
+----+------+ +----+------+ +----+------+ */
second.next = third; // Link second node with the third node
/* Now next of the second Node refers to third. So all three
nodes are linked.
llist.head second third
| | |
| | |
+----+------+ +----+------+ +----+------+
| 1 | o-------->| 2 | o-------->| 3 | null |
+----+------+ +----+------+ +----+------+ */
}
}
// This code has been contributed by 29AjayKumar

Linked List Traversal
In the previous program, we have created a simple linked list with three nodes. Let us traverse the created list and print the data of each node. For traversal, let us write a general-purpose function printList[] that prints any given list.

Linked List

  • Linked List can be defined as collection of objects called nodes that are randomly stored in the memory.
  • A node contains two fields i.e. data stored at that particular address and the pointer which contains the address of the next node in the memory.
  • The last node of the list contains pointer to the null.

Singly Linked List implementation in C

In this program, we are implementing a single linked list in Data Structure using C program.

This is a data structure program using C, here we are implementing a singly linked list using C language program.

In this program,

  • head and tail are two pointers, where head points to first node of linked list and tail points the las node of the linked list.
  • A Node contains two parts
    1. item - item contains data item [it may be a number, string or any object like structure].
    2. next - next contains address of the next node.
  • Last Node of the linked list contains NULL in the next part.

How to Implement A Singly Linked List in Data Structures

Lesson 4 of 54By Simplilearn

Last updated on Sep 15, 20215235
PreviousNext
  • Tutorial Playlist

    Data Structure Tutorial

    Overview

    Arrays in Data Structures: A Guide With Examples

    Lesson - 1

    All You Need to Know About Two-Dimensional Arrays

    Lesson - 2

    All You Need to Know About a Linked List in a Data Structure

    Lesson - 3

    The Complete Guide to Implement a Singly Linked List

    Lesson - 4

    The Ultimate Guide to Implement a Doubly Linked List

    Lesson - 5

    The Fundamentals for Understanding Circular Linked List

    Lesson - 6

    The Ultimate Guide To Understand The Differences Between Stack And Queue

    Lesson - 7

    Implementing Stacks in Data Structures

    Lesson - 8

    Your One-Stop Solution for Stack Implementation Using Array

    Lesson - 9

    Your One-Stop Solution for Queue Implementation Using Array

    Lesson - 10

    Your One-Stop Solution to Learn Depth-First Search[DFS] Algorithm From Scratch

    Lesson - 11

    Your One-Stop Solution for Stack Implementation Using Linked-List

    Lesson - 12

    The Definitive Guide to Understand Stack vs Heap Memory Allocation

    Lesson - 13

    All You Need to Know About Linear Search Algorithm

    Lesson - 14

    All You Need to Know About Breadth-First Search Algorithm

    Lesson - 15

    A One-Stop Solution for Using Binary Search Trees in Data Structure

    Lesson - 16

    The Best Tutorial to Understand Trees in Data Structure

    Lesson - 17

    A Complete Guide to Implement Binary Tree in Data Structure

    Lesson - 18

    A Holistic Look at Using AVL Trees in Data Structures

    Lesson - 19

    All You Need to Know About Tree Traversal in Data Structure

    Lesson - 20

    The Best Guide You’ll Ever Need to Understand B-Tree in Data Structure

    Lesson - 21

    The Best Guide You'll Ever Need to Understand Spanning Tree in Data Structure

    Lesson - 22

    The Best and Easiest Way to Understand an Algorithm

    Lesson - 23

    Your One-Stop Solution to Understand Shell Sort Algorithm

    Lesson - 24

    Your One-Stop Solution to Quick Sort Algorithm

    Lesson - 25

    The Most Useful Guide to Learn Selection Sort Algorithm

    Lesson - 26

    Everything You Need to Know About Radix Sort Algorithm

    Lesson - 27

    Everything You Need to Know About the Counting Sort Algorithm

    Lesson - 28

    Everything You Need to Know About the Merge Sort Algorithm

    Lesson - 29

    Insertion Sort Algorithm: One-Stop Solution That Will Help You Understand Insertion Sort

    Lesson - 30

    Everything You Need to Know About the Bubble Sort Algorithm

    Lesson - 31

    The Best Guide You’ll Ever Need to Understand Bucket Sort Algorithm

    Lesson - 32

    Your One-Stop Solution to Understand Recursive Algorithm in Programming

    Lesson - 33

    The Definitive Guide to Understanding Greedy Algorithm

    Lesson - 34

    Your One-Stop Solution to Understand Backtracking Algorithm

    Lesson - 35

    The Fundamentals of the Bellman-Ford Algorithm

    Lesson - 36

    Your One-Stop Solution for Graphs in Data Structures

    Lesson - 37

    The Best Guide to Understand and Implement Solutions for Tower of Hanoi Puzzle

    Lesson - 38

    A Simplified and Complete Guide to Learn Space and Time Complexity

    Lesson - 39

    All You Need to Know About the Knapsack Problem : Your Complete Guide

    Lesson - 40

    The Fibonacci Series: Mathematical and Programming Interpretation

    Lesson - 41

    The Holistic Look at Longest Common Subsequence Problem

    Lesson - 42

    The Best Article to Understand What Is Dynamic Programming

    Lesson - 43

    A Guide to Implement Longest Increasing Subsequence Using Dynamic Programming

    Lesson - 44

    A Holistic Guide to Learn Stop Solution Using Dynamic Programming

    Lesson - 45

    One Stop Solution to All the Dynamic Programming Problems

    Lesson - 46

    Understanding the Fundamentals of Binomial Distribution

    Lesson - 47

    Here’s All You Need to Know About Minimum Spanning Tree in Data Structures

    Lesson - 48

    Understanding the Difference Between Array and Linked List

    Lesson - 49

    The Best Article Out There to Understand the B+ Tree in Data Structure

    Lesson - 50

    A Comprehensive Look at Queue in Data Structure

    Lesson - 51

    Your One-Stop Solution to Understand Coin Change Problem

    Lesson - 52

    The Best Way to Understand the Matrix Chain Multiplication Problem

    Lesson - 53

    Your One-Stop Solution to Learn Floyd-Warshall Algorithm for Using Dynamic Programming

    Lesson - 54

Table of Contents

View More

A singly linked list is like a train system, where it connects each bogie to the next bogie. A singly linked list is a unidirectional linked list; i.e., you can only traverse it from head node to tail node. It is used to do a slideshow or some basic operations on a notepad like undo and redo.

How to Implement a Singly Linked List?

You can create nodes of singly linked lists using classes or structures. And you link them using the next pointer.

Code:

// implementation of singly linked list

#include

using namespace std;

//A class to create node

class Node {

public:

int data;

Node* next;

};

// A function to print the given linked list

// starting from the given node

void printList[Node* n]

{

while [n != NULL]

{

cout data next;

}

}

int main[]

{

//creating nodes

Node* head = NULL;

Node* second = NULL;

Node* third = NULL;

Node* tail = NULL;

// allocate four nodes

head = new Node[];

second = new Node[];

third = new Node[];

tail = new Node[];

head->data = 2; // assign data in head node

head->next = second; // Link first node with second

second->data = 3; // assign data to second node

second->next = third;//Link second node with third

third->data = 5; // assign data to third node

third->next = tail;//Link third node with tail

tail->data = 7;// assign data to tail node

tail->next=NULL;//link tail node with NULL

//printing singly linked list

cout

Bài mới nhất

Chủ Đề