Where will be the free node available while inserting a new node in a linked list?

Top 17 Linked List Interview Questions & Answers [2022]

1] Mention what is Linked lists?

A linked list is a data structure that can store a collection of items. In other words, linked lists can be utilized to store several objects of the same type. Each unit or element of the list is referred as a node. Each node has its own data and the address of the next node. It is like a chain. Linked Lists are used to create graph and trees.

2] What type of memory allocation is referred for Linked lists?

Dynamic memory allocation is referred for Linked lists.

3] Mention what is traversal in linked lists?

Term Traversal is used to refer the operation of processing each element in the list.

4] Describe what is Node in link list? And name the types of Linked Lists?

Together [data + link] is referred as the Node.

Types of Linked Lists are,

  • Singly Linked List
  • Doubly Linked List
  • Multiply Linked List
  • Circular Linked List

5] Mention what is Singly Linked list?

Singly Linked list are a type of data structure. In a singly linked list, each node in the list stores the contents of the node and a reference or pointer to the next node in the list. It does not store any reference or pointer to the previous node.

6] Mention what is the difference between Linear Array and Linked List?

The difference between Linear Array and Linked List are shown below,

Linear ArrayLinked List
  • Deletion and Insertions are difficult.
  • Deletion and Insertions can be done easily.
  • For insertion and deletion, it needs movements
  • For insertion and deletion, it does not require movement of nodes
  • In it space is wasted
  • In it space is not wasted
  • It is expensive
  • It is not expensive
  • It cannot be reduced or extended according to requirements
  • It can be reduced or extended according to requirements
  • To avail each element same amount of time is required.
  • To avail each element different amount of time is required.
  • In consecutive memory locations elements are stored.
  • Elements may or may not be stored in consecutive memory locations
  • We can reach there directly if we have to go to a particular element
  • To reach a particular node, you need to go through all those nodes that come before that node.

7] Mention what are the applications of Linked Lists?

Applications of Linked Lists are,

  • Linked lists are used to implement queues, stacks, graphs, etc.
  • In Linked Lists you don’t need to know the size in advance.
  • Linked lists let you insert elements at the beginning and end of the list.

8] What does the dummy header in linked list contain?

In linked list, the dummy header contains the first record of the actual data

9] Mention the steps to insert data at the starting of a singly linked list?

Steps to insert data at the starting of a singly linked list include,

  • Create a new node
  • Insert new node by allocating the head pointer to the new node next pointer
  • Updating the head pointer to the point the new node.
Node *head; void InsertNodeAtFront[int data] { /* 1. create the new node*/ Node *temp = new Node; temp->data = data; /* 2. insert it at the first position*/ temp->next = head; /* 3. update the head to point to this new node*/ head = temp; }

10] Mention what is the difference between singly and doubly linked lists?

A doubly linked list nodes contain three fields:

  • An integer value and
  • Two links to other nodes
  • one to point to the previous node and
  • other to point to the next node.

Whereas a singly linked list contains points only to the next node.

11] Mention what are the applications that use Linked lists?

Both queues and stacks are often implemented using linked lists. Other applications are list, binary tree, skip, unrolled linked list, hash table, etc.

12] Explain how to add an item to the beginning of the list?

To add an item to the beginning of the list, you have to do the following:

  • Create a new item and set its value
  • Link the new item to point to the head of the list
  • Set the head of the list to be our new item

If you are using a function to do this operation, you need to alter the head variable. To do this, you must pass a pointer to the pointer variable [a double pointer]. so you will be able to modify the pointer itself.

13] Mention what is the biggest advantage of linked lists?

The biggest benefit of linked lists is that you do not specify a fixed size for your list. The more elements you add to the chain, the bigger the chain gets.

14] Mention how to delete first node from singly linked list?

To delete first node from singly linked list

  • Store Current Start in Another Temporary Pointer
  • Move Start Pointer One position Ahead
  • Delete temp i.e Previous Starting Node as we have Updated Version of Start Pointer

15] Mention how to display Singly Linked List from First to Last?

To display Singly Linked List from First to Last,

  • Create a linked list using create[].
  • You cannot change the address stored inside global variable “start” therefore you have to declare one temporary variable -“temp” of type node
  • To traverse from start to end, you should allot address of Starting node in Pointer variable i.e temp.
struct node *temp; //Declare temp temp = start; //Assign Starting Address to temp

If the temp is NULL then you can say that last node is reached.

while[temp!=NULL] { printf["%d",temp->data]; temp=temp->next; }

16] Mention how to insert a new node in linked list where free node will be available?

To insert a new node in linked list the free node will be available in Avail list.

17] Mention for which header list, you will found the last node contains the null pointer?

For grounded header list you will found the last node contains the null pointer.

Text Interview Questions with underline on the notebook with a pencil aside.
Share
Facebook
Twitter
WhatsApp

Basic concepts and nomenclatureEdit

Each record of a linked list is often called an 'element' or 'node'.

The field of each node that contains the address of the next node is usually called the 'next link' or 'next pointer'. The remaining fields are known as the 'data', 'information', 'value', 'cargo', or 'payload' fields.

The 'head' of a list is its first node. The 'tail' of a list may refer either to the rest of the list after the head, or to the last node in the list. In Lisp and some derived languages, the next node may be called the 'cdr' [pronounced could-er] of the list, while the payload of the head node may be called the 'car'.

Singly linked listEdit

Singly linked lists contain nodes which have a data field as well as 'next' field, which points to the next node in line of nodes. Operations that can be performed on singly linked lists include insertion, deletion and traversal.

A singly linked list whose nodes contain two fields: an integer value and a link to the next node

The following code demonstrates how to add a new node with data "value" to the end of a singly linked list:

node addNode[node head, int value] { node temp, p; // declare two nodes temp and p temp = createNode[]; // assume createNode creates a new node with data = 0 and next pointing to NULL. temp->data = value; // add element's value to data part of node if [head == NULL] { head = temp; // when linked list is empty } else { p = head; // assign head to p while [p->next != NULL] { p = p->next; // traverse the list until p is the last node. The last node always points to NULL. } p->next = temp; // Point the previous last node to the new node created. } return head; }

Doubly linked listEdit

In a 'doubly linked list', each node contains, besides the next-node link, a second link field pointing to the 'previous' node in the sequence. The two links may be called 'forward['s'] and 'backwards', or 'next' and 'prev'['previous'].

A doubly linked list whose nodes contain three fields: an integer value, the link forward to the next node, and the link backward to the previous node

A technique known as XOR-linking allows a doubly linked list to be implemented using a single link field in each node. However, this technique requires the ability to do bit operations on addresses, and therefore may not be available in some high-level languages.

Many modern operating systems use doubly linked lists to maintain references to active processes, threads, and other dynamic objects.[2] A common strategy for rootkits to evade detection is to unlink themselves from these lists.[3]

Multiply linked listEdit

In a 'multiply linked list', each node contains two or more link fields, each field being used to connect the same set of data records in a different order of same set [e.g., by name, by department, by date of birth, etc.]. While doubly linked lists can be seen as special cases of multiply linked list, the fact that the two and more orders are opposite to each other leads to simpler and more efficient algorithms, so they are usually treated as a separate case.

Circular linked listEdit

In the last node of a list, the link field often contains a null reference, a special value is used to indicate the lack of further nodes. A less common convention is to make it point to the first node of the list; in that case, the list is said to be 'circular' or 'circularly linked'; otherwise, it is said to be 'open' or 'linear'. It is a list where the last pointer points to the first node.

In the case of a circular doubly linked list, the first node also points to the last node of the list.

Sentinel nodesEdit

In some implementations an extra 'sentinel' or 'dummy' node may be added before the first data record or after the last one. This convention simplifies and accelerates some list-handling algorithms, by ensuring that all links can be safely dereferenced and that every list [even one that contains no data elements] always has a "first" and "last" node.

Empty listsEdit

An empty list is a list that contains no data records. This is usually the same as saying that it has zero nodes. If sentinel nodes are being used, the list is usually said to be empty when it has only sentinel nodes.

Hash linkingEdit

The link fields need not be physically part of the nodes. If the data records are stored in an array and referenced by their indices, the link field may be stored in a separate array with the same indices as the data records.

List handlesEdit

Since a reference to the first node gives access to the whole list, that reference is often called the 'address', 'pointer', or 'handle' of the list. Algorithms that manipulate linked lists usually get such handles to the input lists and return the handles to the resulting lists. In fact, in the context of such algorithms, the word "list" often means "list handle". In some situations, however, it may be convenient to refer to a list by a handle that consists of two links, pointing to its first and last nodes.

Combining alternativesEdit

The alternatives listed above may be arbitrarily combined in almost every way, so one may have circular doubly linked lists without sentinels, circular singly linked lists with sentinels, etc.

TradeoffsEdit

As with most choices in computer programming and design, no method is well suited to all circumstances. A linked list data structure might work well in one case, but cause problems in another. This is a list of some of the common tradeoffs involving linked list structures.

Linked lists vs. dynamic arraysEdit

A dynamic array is a data structure that allocates all elements contiguously in memory, and keeps a count of the current number of elements. If the space reserved for the dynamic array is exceeded, it is reallocated and [possibly] copied, which is an expensive operation.

Linked lists have several advantages over dynamic arrays. Insertion or deletion of an element at a specific point of a list, assuming that we have indexed a pointer to the node [before the one to be removed, or before the insertion point] already, is a constant-time operation [otherwise without this reference it is O[n]], whereas insertion in a dynamic array at random locations will require moving half of the elements on average, and all the elements in the worst case. While one can "delete" an element from an array in constant time by somehow marking its slot as "vacant", this causes fragmentation that impedes the performance of iteration.

Moreover, arbitrarily many elements may be inserted into a linked list, limited only by the total memory available; while a dynamic array will eventually fill up its underlying array data structure and will have to reallocate—an expensive operation, one that may not even be possible if memory is fragmented, although the cost of reallocation can be averaged over insertions, and the cost of an insertion due to reallocation would still be amortized O[1]. This helps with appending elements at the array's end, but inserting into [or removing from] middle positions still carries prohibitive costs due to data moving to maintain contiguity. An array from which many elements are removed may also have to be resized in order to avoid wasting too much space.

On the other hand, dynamic arrays [as well as fixed-size array data structures] allow constant-time random access, while linked lists allow only sequential access to elements. Singly linked lists, in fact, can be easily traversed in only one direction. This makes linked lists unsuitable for applications where it's useful to look up an element by its index quickly, such as heapsort. Sequential access on arrays and dynamic arrays is also faster than on linked lists on many machines, because they have optimal locality of reference and thus make good use of data caching.

Another disadvantage of linked lists is the extra storage needed for references, which often makes them impractical for lists of small data items such as characters or boolean values, because the storage overhead for the links may exceed by a factor of two or more the size of the data. In contrast, a dynamic array requires only the space for the data itself [and a very small amount of control data].[note 1] It can also be slow, and with a naïve allocator, wasteful, to allocate memory separately for each new element, a problem generally solved using memory pools.

Some hybrid solutions try to combine the advantages of the two representations. Unrolled linked lists store several elements in each list node, increasing cache performance while decreasing memory overhead for references. CDR coding does both these as well, by replacing references with the actual data referenced, which extends off the end of the referencing record.

A good example that highlights the pros and cons of using dynamic arrays vs. linked lists is by implementing a program that resolves the Josephus problem. The Josephus problem is an election method that works by having a group of people stand in a circle. Starting at a predetermined person, one may count around the circle n times. Once the nth person is reached, one should remove them from the circle and have the members close the circle. The process is repeated until only one person is left. That person wins the election. This shows the strengths and weaknesses of a linked list vs. a dynamic array, because if the people are viewed as connected nodes in a circular linked list, then it shows how easily the linked list is able to delete nodes [as it only has to rearrange the links to the different nodes]. However, the linked list will be poor at finding the next person to remove and will need to search through the list until it finds that person. A dynamic array, on the other hand, will be poor at deleting nodes [or elements] as it cannot remove one node without individually shifting all the elements up the list by one. However, it is exceptionally easy to find the nth person in the circle by directly referencing them by their position in the array.

The list ranking problem concerns the efficient conversion of a linked list representation into an array. Although trivial for a conventional computer, solving this problem by a parallel algorithm is complicated and has been the subject of much research.

A balanced tree has similar memory access patterns and space overhead to a linked list while permitting much more efficient indexing, taking O[log n] time instead of O[n] for a random access. However, insertion and deletion operations are more expensive due to the overhead of tree manipulations to maintain balance. Schemes exist for trees to automatically maintain themselves in a balanced state: AVL trees or red–black trees.

Singly linked linear lists vs. other listsEdit

While doubly linked and circular lists have advantages over singly linked linear lists, linear lists offer some advantages that make them preferable in some situations.

A singly linked linear list is a recursive data structure, because it contains a pointer to a smaller object of the same type. For that reason, many operations on singly linked linear lists [such as merging two lists, or enumerating the elements in reverse order] often have very simple recursive algorithms, much simpler than any solution using iterative commands. While those recursive solutions can be adapted for doubly linked and circularly linked lists, the procedures generally need extra arguments and more complicated base cases.

Linear singly linked lists also allow tail-sharing, the use of a common final portion of sub-list as the terminal portion of two different lists. In particular, if a new node is added at the beginning of a list, the former list remains available as the tail of the new one—a simple example of a persistent data structure. Again, this is not true with the other variants: a node may never belong to two different circular or doubly linked lists.

In particular, end-sentinel nodes can be shared among singly linked non-circular lists. The same end-sentinel node may be used for every such list. In Lisp, for example, every proper list ends with a link to a special node, denoted by nil or [], whose CAR and CDR links point to itself. Thus a Lisp procedure can safely take the CAR or CDR of any list.

The advantages of the fancy variants are often limited to the complexity of the algorithms, not in their efficiency. A circular list, in particular, can usually be emulated by a linear list together with two variables that point to the first and last nodes, at no extra cost.

Doubly linked vs. singly linkedEdit

Double-linked lists require more space per node [unless one uses XOR-linking], and their elementary operations are more expensive; but they are often easier to manipulate because they allow fast and easy sequential access to the list in both directions. In a doubly linked list, one can insert or delete a node in a constant number of operations given only that node's address. To do the same in a singly linked list, one must have the address of the pointer to that node, which is either the handle for the whole list [in case of the first node] or the link field in the previous node. Some algorithms require access in both directions. On the other hand, doubly linked lists do not allow tail-sharing and cannot be used as persistent data structures.

Circularly linked vs. linearly linkedEdit

A circularly linked list may be a natural option to represent arrays that are naturally circular, e.g. the corners of a polygon, a pool of buffers that are used and released in FIFO ["first in, first out"] order, or a set of processes that should be time-shared in round-robin order. In these applications, a pointer to any node serves as a handle to the whole list.

With a circular list, a pointer to the last node gives easy access also to the first node, by following one link. Thus, in applications that require access to both ends of the list [e.g., in the implementation of a queue], a circular structure allows one to handle the structure by a single pointer, instead of two.

A circular list can be split into two circular lists, in constant time, by giving the addresses of the last node of each piece. The operation consists in swapping the contents of the link fields of those two nodes. Applying the same operation to any two nodes in two distinct lists joins the two list into one. This property greatly simplifies some algorithms and data structures, such as the quad-edge and face-edge.

The simplest representation for an empty circular list [when such a thing makes sense] is a null pointer, indicating that the list has no nodes. Without this choice, many algorithms have to test for this special case, and handle it separately. By contrast, the use of null to denote an empty linear list is more natural and often creates fewer special cases.

For some applications, it can be useful to use singly linked lists that can vary between being circular and being linear, or even circular with a linear initial segment. Algorithms for searching or otherwise operating on these have to take precautions to avoid accidentally entering an endless loop. One usual method is to have a second pointer walking the list at half or double the speed, and if both pointers meet at the same node, you know you found a cycle.

Using sentinel nodesEdit

Sentinel node may simplify certain list operations, by ensuring that the next or previous nodes exist for every element, and that even empty lists have at least one node. One may also use a sentinel node at the end of the list, with an appropriate data field, to eliminate some end-of-list tests. For example, when scanning the list looking for a node with a given value x, setting the sentinel's data field to x makes it unnecessary to test for end-of-list inside the loop. Another example is the merging two sorted lists: if their sentinels have data fields set to +∞, the choice of the next output node does not need special handling for empty lists.

However, sentinel nodes use up extra space [especially in applications that use many short lists], and they may complicate other operations [such as the creation of a new empty list].

However, if the circular list is used merely to simulate a linear list, one may avoid some of this complexity by adding a single sentinel node to every list, between the last and the first data nodes. With this convention, an empty list consists of the sentinel node alone, pointing to itself via the next-node link. The list handle should then be a pointer to the last data node, before the sentinel, if the list is not empty; or to the sentinel itself, if the list is empty.

The same trick can be used to simplify the handling of a doubly linked linear list, by turning it into a circular doubly linked list with a single sentinel node. However, in this case, the handle should be a single pointer to the dummy node itself.[8]

Types of Linked List and Operation on Linked List

In the previous blog, we have seen the structure and properties of a Linked List. In this blog, we will discuss the types of a linked list and basic operations that can be performed on a linked list.

Types of Linked List

Following are the types of linked list

  1. Singly Linked List.
  2. Doubly Linked List.
  3. Circular Linked List.

Singly Linked List

A Singly-linked list is a collection of nodes linked together in a sequential way where each node of the singly linked list contains a data field and an address field that contains the reference of the next node.

The structure of the node in the Singly Linked List is

class Node { int data // variable to store the data of the node Node next // variable to store the address of the next node }

The nodes are connected to each other in this form where the value of the next variable of the last node is NULL i.e. next = NULL, which indicates the end of the linked list.

Doubly Linked List

A Doubly Linked List contains an extra memory to store the address of the previous node, together with the address of the next node and data which are there in the singly linked list. So, here we are storing the address of the next as well as the previous nodes.

The following is the structure of the node in the Doubly Linked List[DLL]:

class DLLNode { int val // variable to store the data of the node DLLNode prev // variable to store the address of the previous node DLLNode next // variable to store the address of the next node }

The nodes are connected to each other in this form where the first node has prev = NULL and the last node has next = NULL.

Advantages over Singly Linked List-

  • It can be traversed both forward and backward direction.
  • The delete operation is more efficient if the node to be deleted is given. [Think! you will get the answer in the second half of this blog]
  • The insert operation is more efficient if the node is given before which insertion should take place. [Think!]

Disadvantages over Singly Linked List-

  • It will require more space as each node has an extra memory to store the address of the previous node.
  • The number of modification increase while doing various operations like insertion, deletion, etc.

Circular Linked List

A circular linked list is either a singly or doubly linked list in which there are no NULL values. Here, we can implement the Circular Linked List by making the use of Singly or Doubly Linked List. In the case of a singly linked list, the next of the last node contains the address of the first node and in case of a doubly-linked list, the next of last node contains the address of the first node and prev of the first node contains the address of the last node.

Advantages of a Circular linked list

  • The list can be traversed from any node.
  • Circular lists are the required data structure when we want a list to be accessed in a circle or loop.
  • We can easily traverse to its previous node in a circular linked list, which is not possible in a singly linked list. [Think!]

Disadvantages of Circular linked list

  • If not traversed carefully, then we could end up in an infinite loop because here we don't have any NULL value to stop the traversal.
  • Operations in a circular linked list are complex as compared to a singly linked list and doubly linked list like reversing a circular linked list, etc.

Basic Operations on Linked List

  • Traversal: To traverse all the nodes one after another.
  • Insertion: To add a node at the given position.
  • Deletion: To delete a node.
  • Searching: To search an element[s] by value.
  • Updating: To update a node.
  • Sorting: To arrange nodes in a linked list in a specific order.
  • Merging: To merge two linked lists into one.

We will see the various implementation of these operations on a singly linked list.

Following is the structure of the node in a linked list:

class Node{ int data // variable containing the data of the node Node next // variable containing the address of next node }

Linked List Traversal

The idea here is to step through the list from beginning to end. For example, we may want to print the list or search for a specific node in the list.

The algorithm for traversing a list

  • Start with the head of the list. Access the content of the head node if it is not null.
  • Then go to the next node[if exists] and access the node information
  • Continue until no more nodes [that is, you have reached the null node]
void traverseLL[Node head] { while[head != NULL] { print[head.data] head = head.next } }

Linked List node Insertion

There can be three cases that will occur when we are inserting a node in a linked list.

  • Insertion at the beginning
  • Insertion at the end. [Append]
  • Insertion after a given node
Insertion at the beginning

Since there is no need to find the end of the list. If the list is empty, we make the new node as the head of the list. Otherwise, we we have to connect the new node to the current head of the list and make the new node, the head of the list.

// function is returning the head of the singly linked-list Node insertAtBegin[Node head, int val] { newNode = new Node[val] // creating new node of linked list if[head == NULL] // check if linked list is empty return newNode else // inserting the node at the beginning { newNode.next = head return newNode } }
Insertion at end

We will traverse the list until we find the last node. Then we insert the new node to the end of the list. Note that we have to consider special cases such as list being empty.

In case of a list being empty, we will return the updated head of the linked list because in this case, the inserted node is the first as well as the last node of the linked list.

// the function is returning the head of the singly linked list Node insertAtEnd[Node head, int val] { if[ head == NULL ] // handing the special case { newNode = new Node[val] head = newNode return head } Node temp = head // traversing the list to get the last node while[ temp.next != NULL ] { temp = temp.next } newNode = new Node[val] temp.next = newNode return head }
Insertion after a given node

We are given the reference to a node, and the new node is inserted after the given node.

void insertAfter[Node prevNode, int val] { newNode = new Node[val] newNode.next = prevNode.next prevNode.next = newNode }

NOTE: If the address of the prevNode is not given, then you can traverse to that node by finding the data value.

Linked List node Deletion

To delete a node from a linked list, we need to do these steps

  • Find the previous node of the node to be deleted.
  • Change the next pointer of the previous node
  • Free the memory of the deleted node.

In the deletion, there is a special case in which the first node is deleted. In this, we need to update the head of the linked list.

// this function will return the head of the linked list Node deleteLL[Node head, Node del] { if[head == del] // if the node to be deleted is the head node { return head.next // special case for the first Node } Node temp = head while[ temp.next != NULL ] { if[temp.next == del] // finding the node to be deleted { temp.next = temp.next.next delete del // free the memory of that Node return head } temp = temp.next } return head // if no node matches in the Linked List }

Linked List node Searching

To search any value in the linked list, we can traverse the linked list and compares the value present in the node.

bool searchLL[Node head, int val] { Node temp = head // creating a temp variable pointing to the head of the linked list while[ temp != NULL] // traversing the list { if[ temp.data == val ] return true temp = temp.next } return false }

Linked List node Updation

To update the value of the node, we just need to set the data part to the new value.

Below is the implementation in which we had to update the value of the first node in which data is equal to val and we have to set it to newVal.

void updateLL[Node head, int val, int newVal] { Node temp = head while[temp != NULL] { if[ temp.data == val] { temp.data = newVal return } temp = temp.next } }

Suggested Problems to solve in Linked List

  • Reverse linked list
  • Middle of the Linked List
  • Odd even linked List
  • Remove Duplicates from Sorted List
  • Merge Sort on Linked List
  • Check if a singly linked list is a palindrome
  • Detect and Remove Loop in a Linked List
  • Sort a linked list using insertion sort
  • Remove Nth Node from List End

Happy coding! Enjoy Algorithms.

How to create a Linked List in Python

A linked list is a data structure made of a chain of node objects. Each node contains a value and a pointer to the next node in the chain.

Linked lists are preferred over arrays due to their dynamic size and ease of insertion and deletion properties.

The head pointer points to the first node, and the last element of the list points to null. When the list is empty, the head pointer points to null.

Video liên quan

Bài Viết Liên Quan

Bài mới nhất

Chủ Đề