Alcoholic liver disease care near patterson

Giới thiệu về cuốn sách này

Giới thiệu về cuốn sách này

  1. Fontes-Cal TCM, Mattos RT, Medeiros NI, et al. Crosstalk between plasma cytokines, inflammation, and liver damage as a new strategy to monitoring NAFLD progression. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.708959.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2021;18:223–38. https://doi.org/10.1038/s41575-020-00381-6.

    Article  PubMed  Google Scholar 

  3. Masuoka HC, Chalasani N. Nonalcoholic fatty liver disease: an emerging threat to obese and diabetic individuals. Ann Ny Acad Sci. 2013;1281:106–22. https://doi.org/10.1111/nyas.12016.

    CAS  Article  PubMed  Google Scholar 

  4. Michelotti A, de Scordilli M, Palmero L, et al. NAFLD-related hepatocarcinoma: the malignant side of metabolic syndrome. Cells-Basel. 2021;10:2034. https://doi.org/10.3390/cells10082034.

    CAS  Article  Google Scholar 

  5. Zhang C, Yang M. The emerging factors and treatment options for NAFLD-related hepatocellular carcinoma. Cancers. 2021;13:3740. https://doi.org/10.3390/cancers13153740.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Juanola O, Martínez-López S, Francés R, et al. Non-alcoholic fatty liver disease: metabolic, genetic, epigenetic and environmental risk factors. Int J Env Res Pub He. 2021;18:5227. https://doi.org/10.3390/ijerph18105227.

    CAS  Article  Google Scholar 

  7. Singal AG, El-Serag HB. Rational screening approaches for HCC in NAFLD patients. J Hepatol. 2021. https://doi.org/10.1016/j.jhep.2021.08.028.

    Article  PubMed  Google Scholar 

  8. Lee SS, Park SH. Radiologic evaluation of nonalcoholic fatty liver disease. World J Gastroentero. 2014;23:7392–402. https://doi.org/10.3748/wjg.v20.

    Article  Google Scholar 

  9. Starekova J, Hernando D, Pickhardt PJ, et al. Quantification of liver fat content with CT and MRI: state of the art. Radiology. 2021. https://doi.org/10.1148/radiol.2021204288.

    Article  PubMed  Google Scholar 

  10. Souabni M, Hammouda O, Romdhani M, et al. Benefits of daytime napping opportunity on physical and cognitive performances in physically active participants: a systematic review. Sports Med. 2021. https://doi.org/10.1007/s40279-021-01482-1.

    Article  PubMed  Google Scholar 

  11. Wang Y, Zeng Y, Zhang X, et al. Daytime napping duration is positively associated with risk of hyperuricemia in a Chinese population. J Clin Endocrinol Metab. 2021;106:e2096–105. https://doi.org/10.1210/clinem/dgab043.

    Article  PubMed  Google Scholar 

  12. Lin L, Lu C, Chen W, et al. Daytime napping and nighttime sleep duration with incident diabetes mellitus: a cohort study in Chinese older adults. Int J Env Res Pub He. 2021;18:5012. https://doi.org/10.3390/ijerph18095012.

    CAS  Article  Google Scholar 

  13. Patterson PD, Liszka MK, Mcilvaine QS, et al. Does the evidence support brief (≤30-mins), moderate (31–60-mins), or long duration naps (61+ mins) on the night shift? A systematic review. Sleep Med Rev. 2021;59:101509. https://doi.org/10.1016/j.smrv.2021.101509.

    Article  PubMed  Google Scholar 

  14. Fu J, Zhang X, Moore JB, et al. Midday nap duration and hypertension among middle-aged and older Chinese adults: a nationwide retrospective cohort study. Int J Env Res Pub He. 2021;18:3680. https://doi.org/10.3390/ijerph18073680.

    Article  Google Scholar 

  15. Jarvis H, Craig D, Barker R, et al. Metabolic risk factors and incident advanced liver disease in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of population-based observational studies. PLoS Med. 2020;17:e1003100. https://doi.org/10.1371/journal.pmed.1003100.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Maier S, Wieland A, Cree-Green M, et al. Lean NAFLD: an underrecognized and challenging disorder in medicine. Rev Endocr Metab Disord. 2021;22:351–66. https://doi.org/10.1007/s11154-020-09621-1.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bastien M, Poirier P, Lemieux I, et al. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014;56:369–81. https://doi.org/10.1016/j.pcad.2013.10.016.

    Article  PubMed  Google Scholar 

  18. Vgontzas AN, Pejovic S, Zoumakis E, et al. Daytime napping after a night of sleep loss decreases sleepiness, improves performance, and causes beneficial changes in cortisol and interleukin-6 secretion. Am J Physiol-Endoc Metab. 2007;292:E253–61. https://doi.org/10.1152/ajpendo.00651.2005.

    CAS  Article  Google Scholar 

  19. Devine JK, Wolf JM. Determinants of cortisol awakening responses to naps and nighttime sleep. Psychoneuroendocrino. 2016;63:128–34. https://doi.org/10.1016/j.psyneuen.2015.09.016.

    CAS  Article  Google Scholar 

  20. Abulizi A, Camporez J, Jurczak MJ, et al. Adipose glucocorticoid action influences whole-body metabolismvia modulation of hepatic insulin action. FASEB J. 2019;33:8174–85. https://doi.org/10.1096/fj.201802706R.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Abulizi A, Camporez J, Zhang D, et al. Ectopic lipid deposition mediates insulin resistance in adipose specific 11β-hydroxysteroid dehydrogenase type 1 transgenic mice. Metabolism. 2019;93:1–9. https://doi.org/10.1016/j.metabol.2018.12.003.

    CAS  Article  PubMed  Google Scholar 

  22. Rasch B, Dodt C, Mölle M, et al. Sleep-stage-specific regulation of plasma catecholamine concentration. Psychoneuroendocrino. 2007;32:884–91. https://doi.org/10.1016/j.psyneuen.2007.06.007.

    CAS  Article  Google Scholar 

  23. Smolensky MH, Hermida RC, Castriotta RJ, et al. Role of sleep-wake cycle on blood pressure circadian rhythms and hypertension. Sleep Med. 2007;8:668–80. https://doi.org/10.1016/j.sleep.2006.11.011.

    Article  PubMed  Google Scholar 

  24. Sowers JR, Whaley-Connell A, Epstein M. Narrative review: the emerging clinical implications of the role of aldosterone in the metabolic syndrome and resistant hypertension. Ann Intern Med. 2009;150:776–83. https://doi.org/10.7326/0003-4819-150-11-200906020-00005.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kang T, Boland BB, Jensen P, et al. Characterization of signaling pathways associated with pancreatic β-cell adaptive flexibility in compensation of obesity-linked diabetes in db/db mice. Mol Cell Proteomics. 2020;19:971–93. https://doi.org/10.1074/mcp.RA119.001882.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Jullian-Desayes I, Trzepizur W, Boursier J, et al. Obstructive sleep apnea, chronic obstructive pulmonary disease and NAFLD: an individual participant data meta-analysis. Sleep Med. 2021;77:357–64. https://doi.org/10.1016/j.sleep.2020.04.004.

    Article  PubMed  Google Scholar 

  27. Hirono H, Watanabe K, Hasegawa K, et al. Impact of continuous positive airway pressure therapy for nonalcoholic fatty liver disease in patients with obstructive sleep apnea. World J Clin Cases. 2021;9:5112–25. https://doi.org/10.12998/wjcc.v9.i19.5112.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Parola M, Vajro P. Nocturnal hypoxia in obese-related obstructive sleep apnea as a putative trigger of oxidative stress in pediatric NAFLD progression. J Hepatol. 2016;65:470–2. https://doi.org/10.1016/j.jhep.2016.05.042.

    Article  PubMed  Google Scholar 

  29. Lucassen EA, Rother KI, Cizza G. Interacting epidemics? Sleep curtailment, insulin resistance, and obesity. Ann Ny Acad Sci. 2012;1264:110–34. https://doi.org/10.1111/j.1749-6632.2012.06655.x.

    CAS  Article  PubMed  Google Scholar 

  30. McHill AW, Melanson EL, Higgins J, et al. Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proc Natl Acad Sci. 2014;111:17302–7. https://doi.org/10.1073/pnas.1412021111.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Picó C, Palou M, Pomar CA, et al. Leptin as a key regulator of the adipose organ. Rev Endocr Metab Disord. 2021. https://doi.org/10.1007/s11154-021-09687-5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gallardo N, Bonzón-Kulichenko E, Fernández-Agulló T, et al. Tissue-specific effects of central leptin on the expression of genes involved in lipid metabolism in liver and white adipose tissue. Endocrinology. 2007;148:5604–10. https://doi.org/10.1210/en.2007-0933.

    CAS  Article  PubMed  Google Scholar 

  33. Han H, Chung SI, Park HJ, et al. Obesity-induced vitamin D deficiency contributes to lung fibrosis and airway hyperresponsiveness. Am J Resp Cell Mol. 2021;64:357–67. https://doi.org/10.1165/rcmb.2020-0086OC.

    CAS  Article  Google Scholar 

  34. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65:1038–48. https://doi.org/10.1016/j.metabol.2015.12.012.

    CAS  Article  PubMed  Google Scholar 

  35. Souza CO, Teixeira AA, Biondo LA, et al. Palmitoleic acid reduces the inflammation in LPS-stimulated macrophages by inhibition of NFκB, independently of PPARs. Clin Exp Pharmacol Physiol. 2017;44:566–75. https://doi.org/10.1111/1440-1681.12736.

    CAS  Article  PubMed  Google Scholar 

  36. Kanwal F, Kramer JR, Mapakshi S, et al. Risk of hepatocellular cancer in patients with non-alcoholic fatty liver disease. Gastroenterology. 2018;155:1828–37. https://doi.org/10.1053/j.gastro.2018.08.024.

    Article  PubMed  Google Scholar 


Page 2

Characteristics Without NAFLD (n = 3223) With NAFLD (n = 140) P value
Age, year 33 ± 8 37 ± 11 < 0.001
Male, n(%) 2053 (63.7%) 86 (61.4%) 0.585
BMI, kg/m2 22.3 ± 3.3 21.9 ± 3.2 0.174
High school above, n(%) 2632 (81.7%) 109 (77.9%) 0.323
Annual family personal income (thousand yuan)     0.601
 < 20 317 (9.8%) 15 (10.7%)  
 20–40 236 (7.3%) 12 (8.6%)  
 40–60 298 (9.2%) 16 (11.4%)  
 60–80 473 (14.7%) 16 (11.4%)  
Physical activity ≥ 1 time/week, n (%) 1230 (38.2%) 65 (46.4%) 0.06
Sleeping pills using 193 (6.0) 16 (11.4%) 0.009
Nocturnal sleeping duration/h, n(%)     0.058
 ≤ 7 h 2154 (66.8%) 103 (73.6%)  
 > 7 h 1069 (33.2%) 37 (26.4%)  
Daytime dapping duration/min, n(%)     0.043
 0 391 (12.1%) 9 (6.4%)  
 < 30 min 346 (10.8%) 11 (7.9%)  
 30-60 min 1653 (51.3%) 79 (56.4%)  
 ≥ 60 min 833 (25.8%) 41 (29.3%)  
Smoking, n(%)    0.896
 Never 2984 (92.6%) 126 (90.0%)  
 Current 141 (4.4%) 11 (7.9%)  
 Quitted 32 (1.0%) 2 (1.4%)  
 Passive 66 (2.0%) 1 (0.7%)  
Often staying up late 1751 (54.3%) 71 (50.7%) 0.377
Sedentary duration/(h per day)     0.387
 > 8 703 (21.8%) 36 (25.7%)  
Coronary disease, n (%) 22 (0.7%) 0 0.999
Diabetes, n (%) 7 (0.2%) 0 0.742
Hypertension, n (%) 64 (2.0%) 8 (5.7%) 0.007
LDL-C 3.1 (0.7) 3.2 (0.6) 0.075
Triglycerides 1.2 (0.9) 1.2 (0.9) 0.672
HDL-C 1.3 (0.2) 1.4 (0.3) 0.028
Total cholesterol 4.8 (0.9) 5.0 (0.8) 0.014

  1. BMI, body mass index; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol