In ........................ topology, each node is connected to every other node in the network.

Answer (Detailed Solution Below)

Haryana Police Constable Full Mock Test (Based On 2018 Previous Year Paper)

  • Network topologyrefers to how the nodes and links in a network are arranged. A network node is a device that cansend, receive, store, or forward data. A network link connects nodes and may be either cabled or wireless links.
  • Understanding topology types provides thebasis for building a successful network. There are a number of topologies but the most common are bus, ring, star, and mesh:

  1. Abus network topologyis when every network node is directly connected to the main cable.
  2. In aring topology, nodes are connected in a loop, so each device hasexactly two neighbors. Adjacent pairs are connected directly; non-adjacent pairs are connected indirectly through multiple nodes.
  3. In astar network topology, all nodes are connected to asingle, central huband each node is indirectly connected through that hub.
  4. Amesh topologyis defined byoverlapping connectionsbetween nodes. You can create afull meshtopology, where every node in the network is connected toevery other node. You can also create a partial mesh topology in which only some nodes are connected to each other and some are connected to the nodes with which theyexchange the most data. Full mesh topology can beexpensiveandtime-consumingto execute, which is why it's often reserved for networks that requirehigh redundancy. Partial mesh provides less redundancy but is more cost-effective and simpler to execute.
  5. Atree topologyis a special type of structure where many connected elements are arranged like the branches of atree. For example,treetopologies are frequently used toorganize the computers in a corporate network or the information in a database.

With hundreds of Questions based on Networking, we help you gain expertise on Computer Awareness. All for free. Explore Testbook Learn to attain the subject expertise with us.

India’s #1 Learning Platform

Start Complete Exam Preparation

Trusted by 2,52,90,822+ Students


Diagram of different network topologies.

Two basic categories of network topologies exist, physical topologies and logical topologies.[5]

The transmission medium layout used to link devices is the physical topology of the network. For conductive or fiber optical mediums, this refers to the layout of cabling, the locations of nodes, and the links between the nodes and the cabling.[1] The physical topology of a network is determined by the capabilities of the network access devices and media, the level of control or fault tolerance desired, and the cost associated with cabling or telecommunication circuits.

In contrast, logical topology is the way that the signals act on the network media,[6] or the way that the data passes through the network from one device to the next without regard to the physical interconnection of the devices.[7] A network's logical topology is not necessarily the same as its physical topology. For example, the original twisted pair Ethernet using repeater hubs was a logical bus topology carried on a physical star topology. Token Ring is a logical ring topology, but is wired as a physical star from the media access unit. Physically, AFDX can be a cascaded star topology of multiple dual redundant Ethernet switches; however, the AFDX Virtual links are modeled as time-switched single-transmitter bus connections, thus following the safety model of a single-transmitter bus topology previously used in aircraft. Logical topologies are often closely associated with media access control methods and protocols. Some networks are able to dynamically change their logical topology through configuration changes to their routers and switches.

The transmission media (often referred to in the literature as the physical media) used to link devices to form a computer network include electrical cables (Ethernet, HomePNA, power line communication,, optical fiber (fiber-optic communication), and radio waves (wireless networking). In the OSI model, these are defined at layers 1 and 2 — the physical layer and the data link layer.

A widely adopted family of transmission media used in local area network (LAN) technology is collectively known as Ethernet. The media and protocol standards that enable communication between networked devices over Ethernet are defined by IEEE 802.3. Ethernet transmits data over both copper and fiber cables. Wireless LAN standards (e.g. those defined by IEEE 802.11) use radio waves, or others use infrared signals as a transmission medium. Power line communication uses a building's power cabling to transmit data.

Wired technologiesEdit

The orders of the following wired technologies are, roughly, from slowest to fastest transmission speed.

  • Coaxial cable is widely used for cable television systems, office buildings, and other work-sites for local area networks. The cables consist of copper or aluminum wire surrounded by an insulating layer (typically a flexible material with a high dielectric constant), which itself is surrounded by a conductive layer. The insulation between the conductors helps maintain the characteristic impedance of the cable which can help improve its performance. Transmission speed ranges from 200 million bits per second to more than 500 million bits per second.
  • ITU-T technology uses existing home wiring (coaxial cable, phone lines and power lines) to create a high-speed (up to 1 Gigabit/s) local area network.
  • Signal traces on printed circuit boards are common for board-level serial communication, particularly between certain types integrated circuits, a common example being SPI.
  • Ribbon cable (untwisted and possibly unshielded) has been a cost-effective media for serial protocols, especially within metallic enclosures or rolled within copper braid or foil, over short distances, or at lower data rates. Several serial network protocols can be deployed without shielded or twisted pair cabling, that is, with "flat" or "ribbon" cable, or a hybrid flat/twisted ribbon cable, should EMC, length, and bandwidth constraints permit: RS-232,[8] RS-422, RS-485,[9] CAN,[10] GPIB, SCSI,[11] etc.
  • Twisted pair wire is the most widely used medium for all telecommunication.[citation needed] Twisted-pair cabling consist of copper wires that are twisted into pairs. Ordinary telephone wires consist of two insulated copper wires twisted into pairs. Computer network cabling (wired Ethernet as defined by IEEE 802.3) consists of 4 pairs of copper cabling that can be utilized for both voice and data transmission. The use of two wires twisted together helps to reduce crosstalk and electromagnetic induction. The transmission speed ranges from 2 million bits per second to 10 billion bits per second. Twisted pair cabling comes in two forms: unshielded twisted pair (UTP) and shielded twisted-pair (STP). Each form comes in several category ratings, designed for use in various scenarios.

2007 map showing submarine optical fiber telecommunication cables around the world.

  • An optical fiber is a glass fiber. It carries pulses of light that represent data. Some advantages of optical fibers over metal wires are very low transmission loss and immunity from electrical interference. Optical fibers can simultaneously carry multiple wavelengths of light, which greatly increases the rate that data can be sent, and helps enable data rates of up to trillions of bits per second. Optic fibers can be used for long runs of cable carrying very high data rates, and are used for undersea cables to interconnect continents.

Price is a main factor distinguishing wired- and wireless-technology options in a business. Wireless options command a price premium that can make purchasing wired computers, printers and other devices a financial benefit. Before making the decision to purchase hard-wired technology products, a review of the restrictions and limitations of the selections is necessary. Business and employee needs may override any cost considerations.[12]

Wireless technologiesEdit

Personal computers are very often connected to networks using wireless links

  • Terrestrial microwave– Terrestrial microwave communication uses Earth-based transmitters and receivers resembling satellite dishes. Terrestrial microwaves are in the low gigahertz range, which limits all communications to line-of-sight. Relay stations are spaced approximately 50km (30mi) apart.
  • Communications satellites– Satellites communicate via microwave radio waves, which are not deflected by the Earth's atmosphere. The satellites are stationed in space, typically in geostationary orbit 35,786km (22,236mi) above the equator. These Earth-orbiting systems are capable of receiving and relaying voice, data, and TV signals.
  • Cellular and PCS systems use several radio communications technologies. The systems divide the region covered into multiple geographic areas. Each area has a low-power transmitter or radio relay antenna device to relay calls from one area to the next area.
  • Radio and spread spectrum technologies– Wireless local area networks use a high-frequency radio technology similar to digital cellular and a low-frequency radio technology. Wireless LANs use spread spectrum technology to enable communication between multiple devices in a limited area. IEEE 802.11 defines a common flavor of open-standards wireless radio-wave technology known as Wi-Fi.
  • Free-space optical communication uses visible or invisible light for communications. In most cases, line-of-sight propagation is used, which limits the physical positioning of communicating devices.

Exotic technologiesEdit

There have been various attempts at transporting data over exotic media:

Both cases have a large round-trip delay time, which gives slow two-way communication, but doesn't prevent sending large amounts of information.

Network nodes are the points of connection of the transmission medium to transmitters and receivers of the electrical, optical, or radio signals carried in the medium. Nodes may be associated with a computer, but certain types may have only a microcontroller at a node or possibly no programmable device at all. In the simplest of serial arrangements, one RS-232 transmitter can be connected by a pair of wires to one receiver, forming two nodes on one link, or a Point-to-Point topology. Some protocols permit a single node to only either transmit or receive (e.g., ARINC 429). Other protocols have nodes that can both transmit and receive into a single channel (e.g., CAN can have many transceivers connected to a single bus). While the conventional system building blocks of a computer network include network interface controllers (NICs), repeaters, hubs, bridges, switches, routers, modems, gateways, and firewalls, most address network concerns beyond the physical network topology and may be represented as single nodes on a particular physical network topology.

Network interfacesEdit

An ATM network interface in the form of an accessory card. A lot of network interfaces are built-in.

A network interface controller (NIC) is computer hardware that provides a computer with the ability to access the transmission media, and has the ability to process low-level network information. For example, the NIC may have a connector for accepting a cable, or an aerial for wireless transmission and reception, and the associated circuitry.

The NIC responds to traffic addressed to a network address for either the NIC or the computer as a whole.

In Ethernet networks, each network interface controller has a unique Media Access Control (MAC) address—usually stored in the controller's permanent memory. To avoid address conflicts between network devices, the Institute of Electrical and Electronics Engineers (IEEE) maintains and administers MAC address uniqueness. The size of an Ethernet MAC address is six octets. The three most significant octets are reserved to identify NIC manufacturers. These manufacturers, using only their assigned prefixes, uniquely assign the three least-significant octets of every Ethernet interface they produce.

Repeaters and hubsEdit

A repeater is an electronic device that receives a network signal, cleans it of unnecessary noise and regenerates it. The signal may be reformed or retransmitted at a higher power level, to the other side of an obstruction possibly using a different transmission medium, so that the signal can cover longer distances without degradation. Commercial repeaters have extended RS-232 segments from 15 meters to over a kilometer.[15] In most twisted pair Ethernet configurations, repeaters are required for cable that runs longer than 100 meters. With fiber optics, repeaters can be tens or even hundreds of kilometers apart.

Repeaters work within the physical layer of the OSI model, that is, there is no end-to-end change in the physical protocol across the repeater, or repeater pair, even if a different physical layer may be used between the ends of the repeater, or repeater pair. Repeaters require a small amount of time to regenerate the signal. This can cause a propagation delay that affects network performance and may affect proper function. As a result, many network architectures limit the number of repeaters that can be used in a row, e.g., the Ethernet 5-4-3 rule.

A repeater with multiple ports is known as hub, an Ethernet hub in Ethernet networks, a USB hub in USB networks.

  • USB networks use hubs to form tiered-star topologies.
  • Ethernet hubs and repeaters in LANs have been mostly obsoleted by modern switches.

A network bridge connects and filters traffic between two network segments at the data link layer (layer 2) of the OSI model to form a single network. This breaks the network's collision domain but maintains a unified broadcast domain. Network segmentation breaks down a large, congested network into an aggregation of smaller, more efficient networks.

Bridges come in three basic types:

  • Local bridges: Directly connect LANs
  • Remote bridges: Can be used to create a wide area network (WAN) link between LANs. Remote bridges, where the connecting link is slower than the end networks, largely have been replaced with routers.
  • Wireless bridges: Can be used to join LANs or connect remote devices to LANs.

A network switch is a device that forwards and filters OSI layer 2 datagrams (frames) between ports based on the destination MAC address in each frame.[16] A switch is distinct from a hub in that it only forwards the frames to the physical ports involved in the communication rather than all ports connected. It can be thought of as a multi-port bridge.[17] It learns to associate physical ports to MAC addresses by examining the source addresses of received frames. If an unknown destination is targeted, the switch broadcasts to all ports but the source. Switches normally have numerous ports, facilitating a star topology for devices, and cascading additional switches.

Multi-layer switches are capable of routing based on layer 3 addressing or additional logical levels. The term switch is often used loosely to include devices such as routers and bridges, as well as devices that may distribute traffic based on load or based on application content (e.g., a Web URL identifier).

A typical home or small office router showing the ADSL telephone line and Ethernet network cable connections

A router is an internetworking device that forwards packets between networks by processing the routing information included in the packet or datagram (Internet protocol information from layer 3). The routing information is often processed in conjunction with the routing table (or forwarding table). A router uses its routing table to determine where to forward packets. A destination in a routing table can include a "null" interface, also known as the "black hole" interface because data can go into it, however, no further processing is done for said data, i.e. the packets are dropped.

Modems (MOdulator-DEModulator) are used to connect network nodes via wire not originally designed for digital network traffic, or for wireless. To do this one or more carrier signals are modulated by the digital signal to produce an analog signal that can be tailored to give the required properties for transmission. Modems are commonly used for telephone lines, using a digital subscriber line technology.


A firewall is a network device for controlling network security and access rules. Firewalls are typically configured to reject access requests from unrecognized sources while allowing actions from recognized ones. The vital role firewalls play in network security grows in parallel with the constant increase in cyber attacks.

The study of network topology recognizes eight basic topologies: point-to-point, bus, star, ring or circular, mesh, tree, hybrid, or daisy chain.[18]


The simplest topology with a dedicated link between two endpoints. Easiest to understand, of the variations of point-to-point topology, is a point-to-point communication channel that appears, to the user, to be permanently associated with the two endpoints. A child's tin can telephone is one example of a physical dedicated channel.

Using circuit-switching or packet-switching technologies, a point-to-point circuit can be set up dynamically and dropped when no longer needed. Switched point-to-point topologies are the basic model of conventional telephony.

The value of a permanent point-to-point network is unimpeded communications between the two endpoints. The value of an on-demand point-to-point connection is proportional to the number of potential pairs of subscribers and has been expressed as Metcalfe's Law.

Daisy chainEdit

Daisy chaining is accomplished by connecting each computer in series to the next. If a message is intended for a computer partway down the line, each system bounces it along in sequence until it reaches the destination. A daisy-chained network can take two basic forms: linear and ring.

  • A linear topology puts a two-way link between one computer and the next. However, this was expensive in the early days of computing, since each computer (except for the ones at each end) required two receivers and two transmitters.
  • By connecting the computers at each end of the chain, a ring topology can be formed. When a node sends a message, the message is processed by each computer in the ring. An advantage of the ring is that the number of transmitters and receivers can be cut in half. Since a message will eventually loop all of the way around, transmission does not need to go both directions. Alternatively, the ring can be used to improve fault tolerance. If the ring breaks at a particular link then the transmission can be sent via the reverse path thereby ensuring that all nodes are always connected in the case of a single failure.

In local area networks using bus topology, each node is connected by interface connectors to a single central cable. This is the 'bus', also referred to as the backbone, or trunk– all data transmission between nodes in the network is transmitted over this common transmission medium and is able to be received by all nodes in the network simultaneously.[1]

A signal containing the address of the intended receiving machine travels from a source machine in both directions to all machines connected to the bus until it finds the intended recipient, which then accepts the data. If the machine address does not match the intended address for the data, the data portion of the signal is ignored. Since the bus topology consists of only one wire it is less expensive to implement than other topologies, but the savings are offset by the higher cost of managing the network. Additionally, since the network is dependent on the single cable, it can be the single point of failure of the network. In this topology data being transferred may be accessed by any node.

Linear busEdit

In a linear bus network, all of the nodes of the network are connected to a common transmission medium which has just two endpoints. When the electrical signal reaches the end of the bus, the signal is reflected back down the line, causing unwanted interference. To prevent this, the two endpoints of the bus are normally terminated with a device called a terminator.

Distributed busEdit

In a distributed bus network, all of the nodes of the network are connected to a common transmission medium with more than two endpoints, created by adding branches to the main section of the transmission medium– the physical distributed bus topology functions in exactly the same fashion as the physical linear bus topology because all nodes share a common transmission medium.

In star topology, every peripheral node (computer workstation or any other peripheral) is connected to a central node called a hub or switch. The hub is the server and the peripherals are the clients. The network does not necessarily have to resemble a star to be classified as a star network, but all of the peripheral nodes on the network must be connected to one central hub. All traffic that traverses the network passes through the central hub, which acts as a signal repeater.

The star topology is considered the easiest topology to design and implement. One advantage of the star topology is the simplicity of adding additional nodes. The primary disadvantage of the star topology is that the hub represents a single point of failure. Also, since all peripheral communication must flow through the central hub, the aggregate central bandwidth forms a network bottleneck for large clusters.

Extended starEdit

The extended star network topology extends a physical star topology by one or more repeaters between the central node and the peripheral (or 'spoke') nodes. The repeaters are used to extend the maximum transmission distance of the physical layer, the point-to-point distance between the central node and the peripheral nodes. Repeaters allow greater transmission distance, further than would be possible using just the transmitting power of the central node. The use of repeaters can also overcome limitations from the standard upon which the physical layer is based.

A physical extended star topology in which repeaters are replaced with hubs or switches is a type of hybrid network topology and is referred to as a physical hierarchical star topology, although some texts make no distinction between the two topologies.

A physical hierarchical star topology can also be referred as a tier-star topology, this topology differs from a tree topology in the way star networks are connected together. A tier-star topology uses a central node, while a tree topology uses a central bus and can also be referred as a star-bus network.

Distributed starEdit

A distributed star is a network topology that is composed of individual networks that are based upon the physical star topology connected in a linear fashion– i.e., 'daisy-chained'– with no central or top level connection point (e.g., two or more 'stacked' hubs, along with their associated star connected nodes or 'spokes').

A ring topology is a daisy chain in a closed loop. Data travels around the ring in one direction. When one node sends data to another, the data passes through each intermediate node on the ring until it reaches its destination. The intermediate nodes repeat (re transmit) the data to keep the signal strong.[5] Every node is a peer; there is no hierarchical relationship of clients and servers. If one node is unable to re transmit data, it severs communication between the nodes before and after it in the bus.


  • When the load on the network increases, its performance is better than bus topology.
  • There is no need of network server to control the connectivity between workstations.


  • Aggregate network bandwidth is bottlenecked by the weakest link between two nodes.

The value of fully meshed networks is proportional to the exponent of the number of subscribers, assuming that communicating groups of any two endpoints, up to and including all the endpoints, is approximated by Reed's Law.

Fully connected networkEdit

Fully connected mesh topology

In a fully connected network, all nodes are interconnected. (In graph theory this is called a complete graph.) The simplest fully connected network is a two-node network. A fully connected network doesn't need to use packet switching or broadcasting. However, since the number of connections grows quadratically with the number of nodes:

c=n(n−1)2.{\displaystyle c={\frac {n(n-1)}{2}}.\,}

This makes it impractical for large networks. This kind of topology does not trip and affect other nodes in the network.

Partially connected networkEdit

Partially connected mesh topology

In a partially connected network, certain nodes are connected to exactly one other node; but some nodes are connected to two or more other nodes with a point-to-point link. This makes it possible to make use of some of the redundancy of mesh topology that is physically fully connected, without the expense and complexity required for a connection between every node in the network.

Hybrid topology is also known as hybrid network.[19] Hybrid networks combine two or more topologies in such a way that the resulting network does not exhibit one of the standard topologies (e.g., bus, star, ring, etc.). For example, a tree network (or star-bus network) is a hybrid topology in which star networks are interconnected via bus networks.[20][21] However, a tree network connected to another tree network is still topologically a tree network, not a distinct network type. A hybrid topology is always produced when two different basic network topologies are connected.

A star-ring network consists of two or more ring networks connected using a multistation access unit (MAU) as a centralized hub.

Snowflake topology is a star network of star networks.[citation needed]

Two other hybrid network types are hybrid mesh and hierarchical star.[20]

Types of Network Topology

Network Topology is the schematic description of a network arrangement, connecting various nodes(sender and receiver) through lines of connection.

Why is this relevant for C2G?

Our network cabling products - copper and fiber - provide the links between the nodes within the topology.


A network topology describes how computers, printers, and other devices (i.e. nodes) are connected to the network. The following topologies are most commonly used to build most networks.

Bus Topology

A bus topology exists when all of the nodes on the network are connected to a single cable. This single cable is commonly referred to as a backbone. Bus topology was used for early 10Base-2, ThinNet, and 10Base-5, ThickNet, coaxial cable Ethernet networks. In this topology messages sent from a node are broadcast to all nodes on the network. Only the intended recipient node accepts and processes the message. This type of network topology is relatively easy to install and inexpensive. This topology requires that both ends of the backbone cable be terminated. If the backbone is not terminated, then signal is likely to bounce back from the end of the cable causing data collisions and noise that may disrupt the network. The main drawbacks to this type of network topology are a limitation on the amount of computers that can be connected to the network, and the fact that only a single backbone cable is used to connect all of the nodes. Network using a bus topology are limited to only a few dozen computers. If the network exceeds this size performance, problems will likely result. If there is a failure in the backbone cable connecting all of the nodes, then the entire network will become unstable and potentially cease to function. This topology is not typically used in modern networks.

Bus Topology

Bus Topology

Ring and Double Ring Topology

A ring topology exists when all of the nodes on the network are connected in a circle. Each node in the network acts as a repeater keeping the signal strong as it travels through the network. A node will generate a signal that is addressed to a specific computer on the network, and then the signal will be sent through the network in either a clockwise or counterclockwise direction. It is important to note that all signals on a network using this type of topology must travel in the same direction. This reduces the amount of data collision and noise on the network. The signal will continue through each node until it reaches the intended destination node. Typically this type of network will use a Token Ring protocol, which allows only one computer to transmit a signal at any given time. The main drawback of this type of topology is that if there is a failure of any of the nodes or cables connecting the nodes, then the network will become unstable and potentially cease to function. The solution to this drawback is a double ring topology. The double ring adds a secondary cable for redundancy in the case of a failure.

Ring Topology

Ring Topology

Double Ring Topology

Double Ring Topology

Star and Extended Star Topologies

The star and extended star are the most popular topologies for Ethernet networks. This type network is easy to setup, relatively inexpensive, and provides more redundancy than other topologies, i.e. bus topology. The star topology is configured by connecting all of the nodes on the network to central device. The central connection allows the network to continue functioning even if a single node or cable fails. The major drawback to this topology is that if the central device fails, then the network will become unstable or cease to function. The star topology is most suitable for small, centralized networks. The extended star topology adds sub-central devices that are connect to the central device. This type of topology is advantageous for large networks and provides functionality for the organization and subnetting of the IP address allocation within the network. The extended star topology is most suitable for large networks that may span an entire building.

Star Topology

Star Topology

Extended Star Topology

Extended Star Topology


The tree/hierarchical topology is configured by integrating multiple star topologies on a bus topology and using a central "root" node. The major drawback to this topology is that if the "root" node fails, then the network will become unstable or cease to function. This type of topology holds the advantage over a bus or star topology because it is able to better support future expansion of the network. However, this type of network is not commonly used because of the vulnerability of the topology.

Tree/Hierarchical Topology

Tree/Hierarchical Topology

Mesh Topology

This topology is divided into two different types; full-mesh and partial mesh. A full mesh topology provides a connection from each node to every other node on the network. This provides a fully redundant network and is the most reliable of all networks. If any link or node in the network fails, then there will be another path that will allow network traffic to continue. The major drawback to this type of network is the expense and complexity required to configure this topology. This type of topology is only used in small networks with only a few nodes. A partial mesh topology provides alternate routes from each node to some of the other nodes on the network. This type of topology provides some redundancy and is commonly used in backbone environments, networks where services are vital, and in wide area networks, WANs. The most notable partial mesh network is the Internet.

Mesh Topology

Mesh Topology

Partial Mesh Topology

Partial Mesh Topology

This white paper is for informational purposes only and is subject to change without notice. C2G makes no guarantees, either expressed or implied, concerning the accuracy, completeness or reliability of the information found in this document.